
HP-GL Plotter Simulator
for the HP-50g

Martin Hepperle, 2024

This program represents a simple, limited subset HP-GL interpreter for the HP-50g and similar RPL

calculators. The following commands mnemonics are understood: PA, PU, PD, SP. All other

mnemonics are silently skipped. Files in HP-GL format can be exported by many commercial and free

programs like Corel Draw, Inkscape and others. It might be necessary to modify these files with a text

editor to match the requirements of this program.

The main routine is named “'GLPLOT”. The required subroutines start with the lower case prefix “gl”.

A typical HP-GL file looks like this:

IN;SC;
PU;SP1;LT;VS36;PA3917,4498;
PD;PA3809,4405;
PU;PA3692,4176;
PU;PA3563,4800;
PD;PA3459,4716,3436,4677,3428,4621;PA3564,4094;
PU;PA3584,4075;
...
PU;PA1386,993;
PD;PA1181,900,1182,902,1046,993,1233,1140,1318,1085,1386,993;
PU;SP0;

Output of processing a vector graphic drawn in and exported from Corel Draw.

This is my second iteration on the theme. My first solution was only plotting the coordinate points

without connecting lines, rather complex and not very robust. The proposed solution is a relatively

simple, but rather robust proof of concept program.

It’s execution speed can surely be increased, maybe in a first step by converting the core routines to

SysRPL?

Main Routine “GLPLOT”

Purpose: Read a string of HP-GL commands and plot the graphics on the LCD screen.

Input: A HPGL string of arbitrary length on level 1 of the stack.

1: "IN;SC;PU;PA100,200;PD1100,200,1100,1200,100,1200;"

Subroutines: glEVAL

Notes: The string must be composed of one or more elements.

 Each element must start with a two-character HP-GL command mnemonic,

followed by numeric arguments and a trailing semi-colon ‘;’ terminator. Multiple

numeric arguments must be separated by a comma ‘,’ or a space ‘ ‘ character.

 The string can have line breaks (ASCII character codes 10 and 13). A single

element cannot be longer than 14999 characters. An Element cannot be broken into

lines.

 Mnemonics immediately following each other like “PAPU100,100;” are not

allowed. They must be separated into “PA;PU100,100;”. Such modifications can

be accomplished easily with the search/replace function of a text editor.

 The coordinate system is unscaled i.e. not considering “SC” or “IP” commands. Its

origin should be placed in the lower left corner of the paper and it covers the

rectangle (0,0)–(10900,7650) in plotter units, corresponding to the HP 7470.

 However, it is possible to adjust the scaling by adapting the parameters given to the

XRNG resp. YRNG functions. Alternatively, the “IP” and “SC” commands could

be implemented, defining new XRNG and YRNG limits.

«
 0 10900 XRNG
 0 7650 YRNG
 ERASE
 0 PPAR 2 GET C→R SWAP DROP R→C PVIEW
 (0.,0.) 'XYPT' STO
 0 'PEN' STO
 10 CHR ";" SREPL DROP
 13 CHR ";" SREPL DROP
 ";;" ";" SREPL DROP
 1 → I
 «
 DUP SIZE
 1 SWAP
 FOR J
 DUP
 J J SUB
 ";" == IF
 THEN
 DUP I J 1 - SUB
 glEVAL
 J 1 + 'I' STO
 END
 NEXT
 DROP
 1600 .3 BEEP {} PVIEW
 »
 'PEN' PURGE
 'XYPT' PURGE
 'PPAR' PURGE
»

define x range (plotter units, 7470, A4)
define y range (plotter units, 7470, A4)
clear PICT
show PICT with (0,7650) at upper left
define current point as global variable
define pen as global variable
replace any line feed characters
replace any carriage return characters
replace any doubled terminators
I = start index of current token
 local variable I used only here
 J = length of HPGL string
 search string on stack for ‘;’ character
 FOR

 get character at index J
 IF this is a ‘;’
 THEN
 get substring[I:J-1] (without ‘;)’
 evaluate this element
 new start index I=J+1 (behind ‘;’)
 END
 NEXT
 drop HPGL string from stack
 display PICT until Cancel/ON is pressed

remove temporary variables

Routine “glEVAL”

Purpose: Parse one HPGL element and handle it.

Input: A HP-GL element on the stack, starting with a two-character mnemonics, followed

by optional parameters, without the terminating semi-colon ‘;’:

1: "PA1100,200,1100,1200,100,1200,100,200"

Output: Nothing left on the stack.

Notes: Sets the ‘PEN’ variable as follows:

 0, if a “PU” or “SP” command is found (pen is up).

 1, if a “PD” command is found (pen is down).

Limitations: The input string must be shorter than 15000 characters and have less than 5000

numeric entries.

Subroutines: glNUM, glMOVE.

«
 DUP 1 2 SUB

 CASE

 DUP "PA" ==
 THEN
 glNUM glMOVE
 END

 DUP "PD" ==
 THEN
 1 'PEN' STO glNUM glMOVE
 END

 DUP "PU" ==
 THEN
 0 'PEN' STO glNUM glMOVE
 END

 DUP "SP" ==
 THEN
 0 'PEN' STO glNUM DROP
 END

 DROP2

 END
»

extract the two-character mnemonics

PA: move pen (may be up or down)

PD: pen down, then move

PU: pen up, then move

SP: pen up, drop pen number

else: drop string and mnemonics

Note: one could move the call of the glNUM subroutine out of the CASE construct, but I found the

resulting code less clear and not really smaller.

Routine “glNUM”

Purpose: Converts a string of HPGL mnemonics (starting with two characters, followed by

optional numeric parameters) into a list of numeric values. If the HPGL command

is not recognized or if no numeric arguments are given, the returned list is empty.

Input: Two entries on the stack:

2:"PA1100,200,1100,1200,100,1200,100,200"
1:"PA"

Output: A list of parameters on level 1 of the stack:

1: {1100, 200, 1100, 1200, 100, 1200, 100, 200}

Notes: On input, the mnemonics identifier on level 1 is left by the caller and is silently

dropped here, to avoid having to drop it in each branch of the caller’s glEVAL

CASE statement.

Limitations: The string must be shorter than 15000 characters and have less than 5000 numeric

entries.

«
 DROP
 DUP SIZE

 2 > IF
 THEN
 3 14999 SUB
 "{" SWAP + "}" +
 OBJ→
 ELSE
 DROP
 {}
 END
»

drop the unused mnemonic string
get the length of the string

IF any parameters follow the mnemonic
THEN
 extract the parameter list
 convert to a list-like string
 convert to a list object
ELSE
 drop the string
 return an empty list
END

Implementation note: the OBJ→ function is very convenient as it accepts a comma or a space

separated list-like string.

Routine “glMOVE”

Purpose: Split a list of numbers into coordinate pairs and move the pen to each point. If the

pen is down ‘'PEN’ == 1) a line is drawn from the previous to the new position.

The current pen position is always updated.

Input: A list of numbers on level 1.

1: {1100, 200, 1100, 1200, 100, 1200, 100, 200}

Output: nothing on the stack, updated variable XYPT.

Notes: The list can be empty. In this case nothing happens.

Limitations: The input list must have less than 5000 entries.

«
 WHILE DUP SIZE 2 / IP
 REPEAT
 DUP
 3 4999 SUB
 SWAP
 1 2 SUB
 OBJ→ DROP
 R→C

 'PEN' RCL
 1 == IF
 THEN
 DUP 'XYPT' RCL LINE
 END

 'XYPT' STO
 END
 DROP
»

WHILE the list contains more pairs

 get list of elements from 3 to the end

 get list of the first two elements
 convert to two numbers and drop count
 convert to coordinate pait

 IF the pen is down
 THEN
 get previous point and draw line
 END

 update current point
END
drop repeat count (0 or 1)

