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1: Introduction
The Indian mathematician Srinivasa Ramanujan (1887–1920) developed a
few formulas to approximate the perimeter of an ellipse. In this paper I im-
plement the most accurate of those formulas as a User RPL program for the
hp50g and summarize the program performance, including reduced accu-
racy for thin ellipses. Programs to calculate the Ramanujan approximation
for several HP calculators are given in the appendices. The closed-form ex-
pression for the ellipse perimeter using the elliptic integral 𝐸(𝑘) is also
implemented for the 50g, using a Chebyshev polynomial approximation for
𝐸(𝑘) from the literature.
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An experimental 50g program is given to find the length of a segment of
an ellipse, using the built-in numerical integration function ∫, and the per-
formance is tested. This mostly illustrates the deficiencies of implementing
special functions with integral definitions.

These programs are to be used with Numeric, Approx, and Radians modes.
As usual with these papers of mine, there is no original work save for

the program code and some trivial algebraic manipulations. My sources
are given in the References section.

I learned of the Ramanujan approximation from reference [1] which in
turn refers to a paper by Almkvist and Berndt [2]. That 24-page paper
starts with a description and analysis of Gauss’s work on the arithmetic-
geometric mean (AGM), describes using the AGM to calculate 𝜋, then gets
into the ellipse perimeter approximations, with a brief detour to the Ladies
Diary and back. 54 additional references are also given.

𝑏
𝑎

For an ellipse with semi-major axis 𝑎 and semi-minor axis 𝑏, the approx-
imate perimeter 𝑃 given by Ramanujan is

𝑃 ≈ 𝜋 (𝑎 + 𝑏) (1 + 3𝜆2

10 +
√

4 − 3𝜆2
+ 3𝜆10

217 ), 𝜆 = 𝑎 − 𝑏
𝑎 + 𝑏

, 𝑎 > 𝑏

Note that if 𝑎 = 𝑏 we have a circle, not an ellipse, and 𝜆 = 0 so 𝑃 = 𝜋(2𝑎),
which is just the circumference of the circle with diameter 2𝑎.

𝜆 normalizes the eccentricity of the ellipse in the sense that (infinitely)
many combinations of 𝑎 and 𝑏 result in the same value of 𝜆. We can rewrite
the equation above as

𝑃 ≈ 𝑚𝑓(𝜆), 𝑚 = 𝜋(𝑎 + 𝑏), 𝑓(𝜆) = 1 + 3𝜆2

10 +
√

4 − 3𝜆2
+ 3𝜆10

217

which makes it obvious that, for the Ramanujan approximation, the perime-
ter of any ellipse is the product of 𝑓(𝜆), which is the same for many ellipses,
and 𝑚, which specifies the parameters of a particular ellipse.

As mentioned above 𝜆 = 0 for 𝑎 = 𝑏. In general, 0 ≤ 𝜆 < 1. 𝜆 only equals
1 when 𝑏 = 0; in which case we don’t have an ellipse. The plot below shows
𝑓(𝜆). 𝑓(1) is defined and is equal to 1835041/1441792 or about 1.272.
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The plots below show the relative error of the Ramanujan’s approxima-
tion over two different ranges of 𝑎 with 𝑏 = 1.
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This is a fair approximation. The program is small and fast, and only
uses basic arithmetic operations; no trig functions or logarithms and just
a single square root. If we quantify the ellipse eccentricity as the ratio
𝑟 = 𝑎/𝑏, then we should get all 12 available digits for 𝑟 up to about 𝑟 = 1.6.
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Even up to 𝑟 = 3 we should have about 8 good digits. The relative error
levels out to about 3 ⋅ 10−3 for 𝑟 up to 104, which is a very skinny ellipse.

2: 50g program ELPRA

For calculation, the equation above is written as

𝑃 ≈ 𝑘(1 + 𝐿
10 + 𝑀

+ 𝑐𝜆10)

with

𝑘 = 𝜋 (𝑎 + 𝑏) , 𝜆 = 𝑎 − 𝑏
𝑎 + 𝑏

, 𝐿 = 3𝜆2, 𝑀 =
√

4 − 𝐿

and
𝑐 = 3/217 ≈ 2.28881835938 ⋅ 10−5

Nominally the approximation requires 𝑎 > 𝑏. However, 𝜆 is only raised to
even integer powers so implementations need not ensure 𝑎 > 𝑏.

The program is named ELPRA (a severe contraction of “ellipse perimeter,
Ramanujan approximation”) and has the stack I/O diagram

2 𝑎
1 𝑏 ⟹ 𝑃

The perimeter of an ellipse with 𝑎 = 4 and 𝑏 = 1 is estimated with
4 1 ELPRA ⟹ 17.1568414365

ELPRA (123.5 bytes, checksum #4B0Eh, execution time ≈ 46 mS)

Code 1 2 3 4 5 Comment

« 𝑏 𝑎
DUP2 𝑏 𝑎 𝑏 𝑎 Find 𝑘 = 𝜋(𝑎 + 𝑏)
+ 𝜋 * 𝑘 𝑏 𝑎
UNROT 𝑏 𝑎 𝑘 Find 𝜆,
DUP2 − 𝑎 − 𝑏 𝑏 𝑎 𝑘 ⋯ 𝜆 = (𝑎 − 𝑏)/(𝑎 + 𝑏)
UNROT 𝑏 𝑎 𝑎 − 𝑏 𝑘
+ / 𝜆 𝑘
DUP SQ 𝜆2 𝜆 𝑘 Find 𝐿 = 3𝜆2

3. * DUP 𝐿 𝐿 𝜆 𝑘
4. SWAP − √ 𝑀 𝐿 𝜆 𝑘 ⋯ Find 𝑀 =

√
4 − 𝐿

10. + / 𝑄 𝜆 𝑘 𝑄 = 𝐿/(10 + 𝑀)
1. + 1 + 𝑄 𝜆 𝑘
SWAP 10. ^ 𝜆10 1 + 𝑄 𝑘
2.28881835938E-5 * 𝑐𝜆10 1 + 𝑄 𝑘
+ 𝑅 𝑘 𝑅 = 1 + 𝑄 + 𝑐𝜆10

* 𝑃 𝑃 is the perimeter.
»
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The ellipses1 ‘⋯’ in stack level 5 indicate that the level is temporarily
used by the commands in the ‘Code’ column. Only 5 stack levels are used.

3: Ellipse perimeter with elliptic integral 𝐸(𝑘)
It has long been known that the ellipse perimeter 𝑃 with 𝑎 > 𝑏 is given
exactly by

𝑃 = 4𝑎𝐸(𝑘), 𝑘 = √1 − ( 𝑏
𝑎

)
2

, 𝐸(𝑘) = ∫
𝜋/2

0
√1 − 𝑘2(sin 𝜃)2 𝑑𝜃

where 𝐸(𝑘) is Legendre’s complete elliptic integral of the second kind.2
Finding these perimeter approximations is an irresistable temptation for
many people; even Kepler took a shot at it. In the end, these approxima-
tions all estimate 𝐸(𝑘) in one way or another. Usually the approximations
are best for nearly-circular ellipses and accuracy degrades as the ellipse
becomes more elongated (𝑎 ≫ 𝑏), as does Ramanujan’s approximation.

There are many ways to calculate 𝐸(𝑘), but just for variety let’s try a
Chebyshev approximation given by W. J. Cody in reference [8]. For real 𝑘
the approximation is

𝐸(𝑘) ≈ 1 +
𝑛

∑
𝑖=1

𝑐𝑖𝑣𝑖 + ln(1
𝑣

)
𝑛

∑
𝑖=1

𝑑𝑖𝑣𝑖, 𝑣 = 1 − 𝑘2

Cody gives tables of the polynomial coefficients 𝑐𝑖 and 𝑑𝑖 for different values
of 𝑛. His table Ia indicates that the maximum deviation from the true value
of 𝐸(𝑘) for 𝑛 = 7 is 2.18 ⋅10−13, which is below the 50g minimum resolution
of 1 ⋅ 10−12. The coefficients are given with 15 significant digits, so I’ve
rounded them to the 12 significant digits shown in the table below.

𝑖 𝑐𝑖 𝑑𝑖

1 4.431 4719 3468 E-1 2.499 9999 8449 E-1
2 5.681 1568 1054 E-2 9.374 8806 2098 E-2
3 2.218 6220 6994 E-2 5.849 5029 7066 E-2
4 1.568 4770 0240 E-2 4.090 7482 1593 E-2
5 1.922 8438 9023 E-2 2.350 9160 2565 E-2
6 1.218 1948 1487 E-2 6.456 8224 7315 E-3
7 1.556 1874 4745 E-3 3.788 8648 7349 E-4

The approximation for 𝐸(𝑘) is implemented as program EECOM, below.

1 𝑘 ⟹ 𝐸(𝑘)

1No pun intended.
2And you could use John Keith’s elliptic.zip package at https://www.hpcalc.org/

details/9612; it includes both a program to calculate ellipse perimeters using 𝐸(𝑘), as
well as 𝐸(𝑘) itself and the other two complete elliptic integrals.
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EECOM (216 bytes, checksum C16Ah, 𝑡 ≈ 0.15 s)

Code Comment

«
SQ 1 SWAP − Find 𝑣 = 1 − 𝑘2

[ 3.78886487349E-4 6.45682247315E-3 𝑑𝑖 coefficients
2.35091602565E-2 4.09074821593E-2
5.84950297066E-2 9.37488062098E-2
.249999998449 0 ]
OVER PEVAL Find 𝑃𝑑 = Σ𝑑𝑖𝑣𝑖

OVER INV LN * Find ln(1/𝑣)𝑃𝑑
[ 1.55618744745E-3 1.21819481487E-2 𝑐𝑖 coefficients
1.92284389023E-2 1.56847700240E-2
2.21862206994E-2 5.68115681054E-2
.443147193468 0 ]
ROT PEVAL Find 𝑃𝑐 = Σ𝑐𝑖𝑣𝑖

+ 1 + 𝐸(𝑘) = 1 + 𝑃𝑐 + ln(1/𝑣)𝑃𝑑
»

I tested EECOM with 1000 values from 𝑘 = 0 to 𝑘 = 0.999. The maximum
absolute error is about ±8 ⋅ 10−12, which exceeds the error of 2.18 ⋅ 10−13

given by Cody. There are two reasons for this: the coefficients have been
rounded down from 15 to 12 digits, and the 50g only has 12-digit precision.

EECOM does no input validation and requires 0 ≤ 𝑘 < 1, although
𝐸(1) = 1; the program could be modified to handle this special case.

Program ELIPP listed below finds the ellipse perimeter 𝑃 with EECOM. 𝑎
and 𝑏 may actually be entered in either order as ELIPP swaps the values as
needed so 𝑎 > 𝑏. For the test cases in Appendix M, ELIPP has a maximum
relative error of about 9 ⋅ 10−12.

2 𝑎
1 𝑏 ⟹ 𝑃

ELIPP (78 bytes, checksum 3836h, 𝑡 ≈ 0.18 s)

Code Comment

«
DUP2 > «SWAP» IFT Swap 𝑎 and 𝑏 so 𝑎 > 𝑏, if needed
DUP UNROT Copy 𝑎
/ SQ 1. SWAP − √ EECOM Find 𝑘 and 𝐸(𝑘)
* 4. * Find 𝑃 = 4𝑎𝐸(𝑘)
»

4: Ellipse segment arc length via direct integration
A more interesting problem is to find the arc length 𝑃𝑠 of a segment of
an ellipse, which is a straight-forward application of basic calculus. If the
ellipse is defined with polar coordinates (𝑟, 𝜃) then the arc length from 𝜃 = 𝛼
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to 𝜃 = 𝛽 with 𝛼 < 𝛽 is

𝑃𝑠 = ∫
𝛽

𝛼

√𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃 𝑑𝜃 = 𝑏 E (1 − ( 𝑏
𝑎

)
2

, 𝜃)∣
𝜃=𝛽

𝜃=𝛼

where 𝑎 is 1/2 of the ellipse axis along the x-axis and 𝑏 is 1/2 of the ellipse
axis along the y-axis. Unlike the Ramanujan approximation above, we may
have 𝑏 > 𝑎.

E(𝑥, 𝜃) is the incomplete elliptic integral of the second kind; the common
integral definition is

E(𝑘, 𝜃) = ∫
𝜃

0

√1 − 𝑘2 sin2 𝜑 𝑑𝜑

Unfortunately the 50g does not implement the incomplete elliptic integrals,
and I did not find any libraries at hpcalc.org. We can always try direct nu-
merical integration, either with the expression for 𝑃𝑠 or for E(𝑘, 𝜃), although
that is almost never the most efficient method to evaluate a special func-
tion. We’ll try the integral for 𝑃𝑠, which also makes a good example of using
integration within a program, where the integrand includes parameters.

Before blindly numerically integrating a function, it is usually a good
idea to have some notion of what the function looks like. From inspection
the integrand of 𝑃𝑠 has no singularities and is always non-negative. Since
the arguments of both sin(𝜃) and cos(𝜃) are just 𝜃, the integrand has a
period of 𝜋 radians. For our application we are interested in 0 ≤ 𝜃 ≤ 2𝜋 so
we will never have more than two cycles and our integrand is not terribly
oscillatory. In other words, a pretty benign integrand. The plot below
shows the integrands for 𝑎 = 1, 𝑏 = 5, and 𝑎 = 5, 𝑏 = 2.
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The stack diagram for the program, EPSG1, is
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4 𝛼 (radians)
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2 𝑎 ⟹
1 𝑏 𝑃𝑠
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where 𝑛𝑝 is the number of digits of precision desired in 𝑃𝑠 and can be set
from 1 to 11. The code follows.

Program EPSG1 (62.5 bytes, checksum #5F65h)

«
Define the integrand function:
« DUP COS ←b * SWAP SIN ←a * R→C ABS »
Save the local variables. 𝛾 is the integrand function.
→ ←a ←b 𝛾
«
Save the display mode, then set the display mode to 𝑛𝑝 digits:
PUSH ROT SCI
Evaluate the integral with limits 𝛼 and 𝛽 on the stack:
'𝛾(𝜏)' '𝜏' ∫
Restore the display mode:
POP
»»

The integrand is defined as a User RPL program and saved to local
variable 𝛾. It will be called repeatedly by ∫ to evaluate the integral, and
∫ puts a value of 𝜃 on the stack which 𝛾 can use as needed to evaluate
the integrand. The parameters 𝑎 and 𝑏 must be saved as compiled local
variables, so they will be visible to 𝛾 from the main program. 𝛾 finds
𝑎 sin(𝜃) and 𝑏 cos(𝜃) and converts these results to a complex number. That
conversion is done so that ABS can be used to find calculate the value of the
integrand. If 𝑧 is a complex number 𝑧 = 𝑐 + 𝑑𝑖, then ABS finds

√
𝑐2 + 𝑑2,

which is just what we want when 𝑐 = 𝑎 sin(𝜃) and 𝑑 = 𝑏 cos(𝜃).
The PUSH command saves the system flags, to be restored by POP at

the end of the program. The subsequent commands ROT SCI set the display
mode to 𝑛𝑝 digits, because ∫ uses the display mode setting as a precision
target for the integration. Using 𝑛𝑝 to specify the approximate accuracy
of 𝑃𝑠 allows us to trade off execution time for precision, without requiring
the user to manually set the display mode before executing EPSG1.

All that remains is to actually evaluate the integral. The integrand
function is put on the stack as '𝛾(𝜏)', as is the variable of integration '𝜏'.
The Greek letters 𝛾 and 𝜏 are used to try to avoid conflicts with existing
global variables.

Note these additional characteristics of EPSG1:
• EPSG1 does no input validation. For example, if you swap 𝛼 and 𝛽 on

the stack, the returned segment will be negative.
• All input arguments must be explicit real numeric constants. 𝑛𝑝 will

be rounded to an integer by SCI. EPSG1 is not listable.
• The system variable IERR is created (if necessary) and updated by

∫, which is an estimate of the error bound for the integral. You can
manually check IERR after running the program.

• Both 𝛼 and 𝛽 should be less that 2𝜋 radians, with 𝛼 < 𝛽. You can
find the complete perimeter of the ellipse with 𝛼 = 0 and 𝛽 = 2𝜋 =
6.28318530718; just use 2 𝜋 *.

To use EPSG1 to estimate the perimeter segment from 𝛼 = 0.1 to 𝛽 = 2.9,
for the ellipse with 𝑎 = 5 and 𝑏 = 2 with 𝑛𝑝 = 11:
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11 0.1 2.9 5 2 EPSG1 ⟹ 10.7982469604
which is correct to 12 digits, according to Mathematica’s numerical evalu-
ation of the same integral. To find the total perimeter of the same ellipse,
set 𝛼 = 0 and 𝛽 = 2𝜋:

11 0 2 𝜋 * 5 2 EPSG1 ⟹ 23.0131125956
which is in error by one digit in the last place; 6 should be 7. Execution
time for this example is about 32.5 seconds.

The table below shows some test results for 𝑎 = 5, 𝑏 = 2, 𝛼 = 0.1, and
𝛽 = 3.1, with different values of 𝑛𝑝. 𝑡𝑒𝑞 is the execution time in seconds, and
the correct digits of 𝑃𝑠 are underlined. For 𝑛𝑝 ≥ 7 all 12 digits are correct,
so in this particular case increasing 𝑛𝑝 above 7 only increases execution
time. Note that the execution time sporadically jumps up by a factor of
about 2 as 𝑛𝑝 increases, while IERR decreases steadily and always over-
estimates the actual error.

EPSG1 accuracy and run time, 𝑛𝑝 varies

𝑛𝑝 𝑡𝑒𝑞 𝑃𝑠 Correct digits IERR

1 0.58 11.2718060662 3 1.130
2 1.10 11.2213344732 5 1.12 ⋅ 10−1

3 1.10 11.2213344732 5 1.12 ⋅ 10−2

4 2.11 11.2215095945 6 1.12 ⋅ 10−3

5 4.13 11.2215122014 9 1.12 ⋅ 10−4

6 4.14 11.2215122422 10 1.12 ⋅ 10−5

7 8.17 11.2215122494 12 1.12 ⋅ 10−6

8 8.17 11.2215122494 12 1.12 ⋅ 10−7

9 8.18 11.2215122494 12 1.12 ⋅ 10−8

10 16.20 11.2215122494 12 1.12 ⋅ 10−9

11 16.21 11.2215122494 12 1.12 ⋅ 10−10

Another way to quantify execution time and accuracy is to fix 𝑛𝑝 and 𝑏
and vary 𝑎. The table below shows the results for 𝑛𝑝 = 7, 𝑏 = 1, 𝛼 = 0, and
𝛽 = 6.2. For these values of 𝛼 and 𝛽 we are estimating almost the complete
perimeter of the ellipse.

EPSG1 accuracy and run time, 𝑎 varies

𝑎 𝑡𝑒𝑞 𝑃𝑠 Correct digits

1.1 8.1 6.51787967216 10
1.5 8.1 7.84941488507 10
2 8.1 9.60497637555 8
3 16.1 13.2809477045 11
4 16.1 17.0722427179 10
5 16.1 20.9246139821 9
6 32.3 24.8136532872 11
7 32.3 28.7266003348 11
8 32.3 32.6560787283 10
9 32.3 36.5975036768 9
10 32.3 40.5478643725 9
20 65.9 80.2758116967 8
50 131.9 199.992833092 10
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Finally, we can fix 𝑛𝑝 = 7, 𝛼 = 0, 𝑎 = 5, and 𝑏 = 1, then vary 𝛽
to quantify run time and accuracy as 𝛽 increases, to include more of the
integrand cycles.

EPSG1 accuracy and run time, 𝑎 varies

𝛽 𝑡𝑒𝑞 𝑃𝑠 Correct digits

0.5 4.1 0.816551239826 10
1.0 8.0 2.54458646547 10
1.5 8.1 4.89881329292 9
2.0 8.1 7.33592964853 10
2.5 8.1 9.28803372160 10
3.0 8.1 10.3528187107 10
3.5 8.1 11.0000665390 10
4.0 16.1 12.4765675502 11
4.5 16.2 14.7032336766 10
5.0 8.1 17.1766435486 8
5.5 16.1 19.3183734250 9
6.0 16.1 20.6534613205 8
6.28 32.2 21.0068591032 12

Overall, this performance is typical when a special function is calculated
with an integral definition, which is essentially what we’re doing here. Ac-
curate results are possible (this is not always the case in general) but the
execution time can be very long. A good program for the ellipse segment
arc will have to wait for a good implementation of the incomplete elliptic
integral of the second kind 𝐸(𝑘, 𝜃).

5: Srinavasa Ayengar Ramanujan
Ramanujan was an Indian mathematician who did much of his mathemat-
ical work in Great Britain with Godfrey Hardy at Cambridge. Ramanujan
is one of a few mathematicians who can be said to have some general pop-
ularity, which I think is due to the somewhat unusual circumstances of his
personal and mathematical life. In his early years in school in India he did
quite well until he came across a famous math textbook in high school, a
synopsis of results in pure and applied mathematics. He worked his way
completely through the book, checking the theorems and examples. Al-
though he had a scholarship to a state university in India, he failed his
first year by mostly ignoring all his subjects except mathematics. This
failure resulted in his unemployment until he got a job as a clerk with the
Madras Port Authority. During this period he continued his mathematical
researches and began publishing some papers in local journals.

While clerking at the Port Authority he sent a letter to Hardy with
some of his results. Hardy was impressed, and as an influential British
mathematician Hardy was eventually able to get Ramanujan a scholarship
and to convince him to come to Cambridge in 1914 (leaving his wife behind
in India), both to work with him, and to fill in the substantial gaps in
Ramanujan’s mathematical knowledge — the same gaps in the synopsis
earlier studied by Ramanujan. The notion of a rigorous proof was also not
in Ramanujan’s repertoire, possibly because, again, proofs were not a large
part of the synopsis from which he had learned.
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The culture shock for Ramanujan in Britain, as a high-caste Brahmin,
was severe. There were other Indian students at Cambridge at the time, so
he did make some friends who helped him learn and adapt to the curious
ways of the British, but between the wet, frigid winters and the meat-heavy
British diet (as a Brahmin, Ramanujan was a very strict vegetarian), he
had a rough time. In spite of those difficulties Ramanujan published 25
papers in five years, some with Hardy, in number theory and the theory of
functions. That’s averaging a paper every five months and considering the
quality of most of the papers, an impressive burst of activity.

Unfortunately Ramanujan contracted tuberculosis while in Britain, and
his health was never robust to begin with. He returned to India in 1919
with the hopes that his health would improve in the more familiar climate,
but nonetheless passed away in in April, 1920, at the age of 32. His funeral
was sparsely attended, because he had broken one of the taboos of his
particular Brahmin sect by traveling by sea. On his return to India he was
too ill to travel to perform purification rites which would have removed the
stigma.

A: About the programs
The programs for the different calculators in the following sections all imple-
ment Ramnujan’s approximation of the complete perimeter of the ellipse.
None of the programs include validation of the input arguments and no
error trapping is done. In particular, setting either or both of 𝑎 and 𝑏 to
zero will raise a ‘divide by 0’ error.

Except for the 42s program, stack and register contents are overwritten.
All of the programs were coded and tested on physical calculators.

Each program has been tested with a small set of test cases to catch
gross coding errors. In other words, you’re really using these programs at
your own risk. For the calculators with very limited memory you might
be better off with a simpler, less accurate approximation, particularly if
you accuracy needs are modest and your ellipses are moderately circular.
Appendix M gives a list of test cases which may be used to test accuracy
with a particular calculator.

I am sure that the programs could be further optimized for size and
speed, although I have made some effort to write reasonably efficient code.
For all of the RPN calculators, the stack I/O diagram is

𝑦 𝑏
𝑥 𝑎 ⟹ 𝑃

where 𝑎 is the semi-major axis, 𝑏 is the semi-minor axis, and 𝑃 is the
perimeter. For the non-RPN calculators, the I/O is documented. Actu-
ally, 𝑎 and 𝑏 inputs may be swapped with the Ramanujan approximation.
Geometrically, this is equivalent to rotating the ellipse 90°; the perimeter
remains the same.

I tend not to use the LAST𝑥 or LAST commands if those commands can
be disabled. This allows the programs to work correctly regardless of the
LAST𝑥 status. Some of the programs would be slightly smaller using those
commands.
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Stack diagrams are shown for some of the programs. A ‘?’ in a stack level
or storage register means the contents when the program started executing.

B: HP-11C Ramanujan approximation

All four stack levels and register R0 are used.

Line Instruction Keycode 𝑥 𝑦 𝑧 𝑡

001 LBL A 42,21,11 𝑏 𝑎 ? ?
002 STO 0 44 0 𝑏 𝑎 ? ?
003 X<>Y 34 𝑎 𝑏 ? ?
004 STO+ 0 44,40,0 𝑎 𝑏 ? ?
005 − 30 𝑏 − 𝑎 ? ? ?
006 RCL 0 45 0 𝑎 + 𝑏 𝑏 − 𝑎 ? ?
007 / 10 −𝜆 ? ? ?
008 3 3 3 −𝜆 ? ?
009 X<>Y 34 −𝜆 3 ? ?
010 𝑥2 43 11 𝜆2 3 ? ?
011 × 20 𝐿 ? ? ?
012 LST𝑥 43 36 𝜆2 𝐿 ? ?
013 8 8 8 𝜆2 𝐿 ?
014 / 10 𝜆2/8 𝐿 ? ?
015 5 5 5 𝜆2/8 𝐿 ?
016 𝑦𝑥 14 𝐴 𝐿 ? ?
017 3 3 3 𝐴 𝐿 ?
018 × 20 3𝐴 𝐿 ? ?
019 4 4 4 3𝐴 𝐿 ?
020 / 10 𝐵 𝐿 ? ?
021 X<>Y 34 𝐿 𝐵 ? ?
022 ENTER 36 𝐿 𝐿 𝐵 ?
023 ENTER 36 𝐿 𝐿 𝐿 𝐵
024 4 4 4 𝐿 𝐿 𝐵
025 X<>Y 34 𝐿 4 𝐿 𝐵
026 − 30 4 − 𝐿 𝐿 𝐵 𝐵
027

√
𝑥 11 𝑀 𝐿 𝐵 𝐵

028 1 1 1 𝑀 𝐿 𝐵
029 10𝑥 13 10 𝑀 𝐿 𝐵
030 + 40 𝑀 + 10 𝐿 𝐵 𝐵
031 / 10 𝐷 𝐵 𝐵 𝐵
032 + 40 𝐷 + 𝐵 𝐵 𝐵 𝐵
033 1 1 1 𝐷 + 𝐵 𝐵 𝐵
034 + 40 𝐸 𝐵 𝐵 𝐵
035 RCL 0 45 0 𝑎 + 𝑏 𝐸 𝐵 𝐵
036 × 20 𝐸(𝑎 + 𝑏) 𝐵 𝐵 𝐵
037 𝜋 42 16 𝜋 𝐸(𝑎 + 𝑏) 𝐵 𝐵
038 × 20 𝑃 𝐵 𝐵 𝐵
039 RTN 43 32 𝑃 𝐵 𝐵 𝐵
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These abbreviations are used in the stack diagram.

𝐴 = 𝜆10/215 𝐵 = 3𝜆10/217 𝐿 = 3𝜆2

𝑀 =
√

4 − 𝐿 𝐷 = 𝐿/(10 + 𝑀) 𝐸 = 𝐷 + 𝐵 + 1

• Lines 002–007 find −𝜆 and save 𝑎 + 𝑏 in R0 for use later. −𝜆 need not
be converted to 𝜆 since it is only raised to even powers later.

• Lines 008–011 find 𝐿 = 3𝜆2.
• Lines 011–020 find 𝐵 = 3𝜆10/217 in a convoluted way to reduce pro-

gram lines. 𝐵 is actually calculated as (3/4)(𝜆2/8)5 since 𝜆2 is already
available, and all the numeric constants become single digits. Numer-
ically, this can be sketchy, but some testing shows that we get away
with it this time.

• Lines 021–027 find 𝑀 =
√

4 − 𝐿. The double ENTER at lines 022 and
023 is necessary to get two copies of 𝐿 on the stack, followed by the
numeric constant 4.

• Lines 028 and 029 enter 10 on the stack without pushing 𝐵 off the
stack. Otherwise, explicitly entering 1 0 (for 10) would take two
stack levels. Those two lines could also be replaced with EEX 1.

Execution time is about 4.5 seconds. To estimate the accuracy of the
calculation I tested 72 cases with 𝑏 = 1 and 𝑎 ranging from 1 to 10,000.
The relative error for all 72 cases was zero.

C: HP-15C Ramanujan approximation
The program listing below gives the code for the 15C version of the Ra-
manujan approximation. The following abbreviations are used in the stack
diagram; these are not named 15C storage registers.

𝜆 = 𝑎 − 𝑏
𝑎 + 𝑏

𝐿 = 3𝜆2 𝐵 = 3𝜆2

217

𝑀 =
√

4 − 𝐿 𝐷 = 𝐿
10 + 𝑀

𝐸 = 𝐷 + 𝐵 + 1

Lines 12–20 find 𝐵 in a complicated way to avoid entering 3/217 as a numeric
constant, which reduces the program size. The calculation is arranged so
that all numeric constants are single digits. Lines 28–29 enter 10 on the
stack, without pushing 𝐵 off. Some direct register arithmetic is used to
reduce code size slightly.

The program uses all four stack registers and register R0.

Line Code Keycode 𝑥 𝑦 𝑧 𝑡 R0

001 LBL A 42,21,11 𝑏 𝑎 ? ? ?
002 STO 0 44 0 𝑏 𝑎 ? ? 𝑏
003 X<>Y 34 𝑎 𝑏 ? ? 𝑏
004 STO− 0 44,30, 0 𝑎 𝑏 ? ? 𝑏 − 𝑎
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Line Code Keycode 𝑥 𝑦 𝑧 𝑡 R0

005 + 40 𝑎 + 𝑏 ? ? ? 𝑏 − 𝑎
006 STO÷ 0 44,10, 0 𝑎 + 𝑏 ? ? ? −𝜆
007 X<> 0 42, 4, 0 −𝜆 ? ? ? 𝑎 + 𝑏
008 3 3 3 −𝜆 ? ? 𝑎 + 𝑏
009 X<>Y 34 −𝜆 3 ? ? 𝑎 + 𝑏
010 𝑥2 43 11 𝜆2 3 ? ? 𝑎 + 𝑏
011 × 20 𝐿 ? ? ? 𝑎 + 𝑏
012 LST𝑥 43 36 𝜆2 𝐿 ? ? 𝑎 + 𝑏
013 8 8 8 𝜆2 𝐿 ? 𝑎 + 𝑏
014 ÷ 10 𝜆2/8 𝐿 ? ? 𝑎 + 𝑏
015 5 5 5 𝜆2/8 𝐿 ? 𝑎 + 𝑏
016 𝑦𝑥 14 𝜆10/215 𝐿 ? ? 𝑎 + 𝑏
017 3 3 3 𝜆10/215 𝐿 ? 𝑎 + 𝑏
018 × 20 3𝜆10/215 𝐿 ? ? 𝑎 + 𝑏
019 4 4 4 3𝜆10/215 𝐿 ? 𝑎 + 𝑏
020 / 10 𝐵 𝐿 ? ? 𝑎 + 𝑏
021 X<>Y 21 𝐿 𝐵 ? ? 𝑎 + 𝑏
022 ENTER 36 𝐿 𝐿 𝐵 ? 𝑎 + 𝑏
023 ENTER 36 𝐿 𝐿 𝐿 𝐵 𝑎 + 𝑏
024 4 4 4 𝐿 𝐿 𝐵 𝑎 + 𝑏
025 X<>Y 34 𝐿 4 𝐿 𝐵 𝑎 + 𝑏
026 − 30 4 − 𝐿 𝐿 𝐵 𝐵 𝑎 + 𝑏
027 √𝑥 11 𝑀 𝐿 𝐵 𝐵 𝑎 + 𝑏
028 EEX 26 1E0 𝑀 𝐿 𝐵 𝑎 + 𝑏
029 1 1 10 𝑀 𝐿 𝐵 𝑎 + 𝑏
030 + 40 𝑀 + 10 𝐿 𝐵 𝐵 𝑎 + 𝑏
031 / 10 𝐷 𝐵 𝐵 𝐵 𝑎 + 𝑏
032 + 40 𝐷 + 𝐵 𝐵 𝐵 𝐵 𝑎 + 𝑏
033 1 1 1 𝐷 + 𝐵 𝐵 𝐵 𝑎 + 𝑏
034 + 40 𝐸 𝐵 𝐵 𝐵 𝑎 + 𝑏
035 RCL× 0 45,20, 0 𝐸(𝑎 + 𝑏) 𝐵 𝐵 𝐵 𝑎 + 𝑏
036 𝜋 43 26 𝜋 𝐸(𝑎 + 𝑏) 𝐵 𝐵 𝑎 + 𝑏
037 × 20 𝑃 𝐵 𝐵 𝐵 𝑎 + 𝑏
038 RTN 43 32

D: HP-16C Ramanujan approximation
The 16C is intended for calculations with binary integers but it does have a
floating-point mode so the Ramanujan approximation can be implemented.
Several parts of the program for the 11C must be modified, because:

• The 16C does not have direct register arithmetic instructions.
• The functions 𝑥2, 𝑦𝑥, and 10𝑥 are not implemented.
• 𝜋 is not available as a constant.

These omissions can all be overcome:
• 𝑥2 is calculated with ENTER ×.
• 𝑦𝑥 is used to find 𝑦5, which is done as 𝑦 ⋅ 𝑦2 ⋅ 𝑦2.
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• 10𝑥 is just used to enter 10, which can also be done as EEX 1.
• The value for 𝜋 is stored in register R0 before executing the program.
Enable FLOAT mode on the 16C before entering the code below. Before

executing A, store 𝜋 to R0 with 3.141592654 STO 0. The program uses R0,
R1, and all stack levels. 𝜋 remains in R0 after execution. I only tested
a few cases, but all give exactly the same results as the 11C program,
unsurprisingly.

Line Instruction Keycode Line Instruction Keycode

001 LBL A 43,22, A Find 𝐵 = 3𝜆10/217

Find 𝑏 − 𝑎 026 3 3
002 ENTER 36 027 × 20
003 R↓ 33 028 4 4
004 X<>Y 34 029 / 10
005 − 30 Find 𝑀 =

√
4 − 𝐿

Find 𝑎 + 𝑏, save in R1 030 X<>Y 34
006 LST𝑥 43 36 031 ENTER 36
007 R↑ 43 33 032 ENTER 36
008 + 40 033 4 4
009 STO 1 44 1 034 X<>Y 34
Find 𝐿 = 3𝜆2 035 − 30
010 / 10 036

√
𝑥 43 25

011 3 3 Find 𝐷 = 𝐿/(10 + 𝑀)
012 X<>Y 34 037 EEX 42 49
013 ENTER 36 038 1 1
014 × 20 039 + 40
015 × 20 040 / 10
Find 𝐴 = 𝜆10/215 Find 𝐸 = 𝐷 + 𝐵 + 1
016 LST𝑥 43 36 041 + 40
017 8 8 042 1 1
018 / 10 043 + 40
019 ENTER 36 Find 𝑃 = 𝜋(𝑎 + 𝑏)𝐸
020 × 20 044 RCL 1 45 1
021 LST𝑥 43 36 045 × 20
022 X<>Y 34 046 RCL 0 45 0
023 × 20 047 × 20
024 LST𝑥 43 36 048 RTN 43 21
025 × 20

E: HP-20S Ramanujan approximation
The 20S is not an RPN calculator but is programmable. Storage registers
R0, R1, and R2 are used. The checksum is 49E4 if A is the only program in
memory. Program A uses 59 of the 99 available program lines.

To find the ellipse perimeter for 𝑎 = 4 and 𝑏 = 1, use
4 INPUT 1 XEQ A ⟹ 17.1568414364
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Line Code Keycode R0 R1 R2

01 LBL A 61 41 A ? ? ?
02 STO 1 21 1 ? 𝑏 ?
03 SWAP 51 31 ? 𝑏 ?
04 STO 0 21 0 𝑎 𝑏 ?
05 1 1 𝑎 𝑏 ?
06 STO 2 21 2 𝑎 𝑏 1
07 ( 33 𝑎 𝑏 1
08 RCL 0 22 0 𝑎 𝑏 1
09 − 65 𝑎 𝑏 1
10 RCL 1 22 1 𝑎 𝑏 1
11 ) 34 𝑎 𝑏 1
12 ÷ 45 𝑎 𝑏 1
13 ( 33 𝑎 𝑏 1
14 RCL 0 22 0 𝑎 𝑏 1
15 + 75 𝑎 𝑏 1
16 RCL 1 22 1 𝑎 𝑏 1
17 ) 34 𝑎 𝑏 1
18 STO 0 21 0 𝑎 + 𝑏 𝑏 1
19 = 74 𝑎 + 𝑏 𝑏 1
20 STO 1 21 1 𝑎 + 𝑏 𝜆 1
21 𝑦𝑥 14 𝑎 + 𝑏 𝜆 1
22 1 1 𝑎 + 𝑏 𝜆 1
23 0 0 𝑎 + 𝑏 𝜆 1
24 × 55 𝑎 + 𝑏 𝜆 1
25 3 3 𝑎 + 𝑏 𝜆 1
26 ÷ 45 𝑎 + 𝑏 𝜆 1
27 2 2 𝑎 + 𝑏 𝜆 1
28 𝑦𝑥 14 𝑎 + 𝑏 𝜆 1
29 1 1 𝑎 + 𝑏 𝜆 1
30 7 7 𝑎 + 𝑏 𝜆 1
31 = 74 𝑎 + 𝑏 𝜆 1
32 STO+ 2 21 75 2 𝑎 + 𝑏 𝜆 1 + 𝑐𝜆10

33 RCL 1 22 1 𝑎 + 𝑏 𝜆 1 + 𝑐𝜆10

34 𝑥2 51 11 𝑎 + 𝑏 𝜆 1 + 𝑐𝜆10

35 × 55 𝑎 + 𝑏 𝜆 1 + 𝑐𝜆10

36 3 3 𝑎 + 𝑏 𝜆 1 + 𝑐𝜆10

37 = 74 𝑎 + 𝑏 𝜆 1 + 𝑐𝜆10

38 STO 1 21 1 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

39 / 45 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

40 ( 33 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

41 ( 33 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

42 4 4 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10
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Line Code Keycode R0 R1 R2

43 − 65 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

44 RCL 1 22 1 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

45 ) 34 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

46
√

𝑥 11 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

47 + 75 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

48 1 1 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

49 0 0 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

50 ) 34 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

51 + 75 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

52 RCL 2 22 2 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

53 = 74 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

54 × 55 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

55 RCL 0 22 0 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

56 × 55 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

57 𝜋 61 22 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

58 = 74 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

59 RTN 61 26 𝑎 + 𝑏 3𝜆2 1 + 𝑐𝜆10

F: HP-28 Ramanujan approximation
Program 'EPRA' listed below runs on the HP-28C and 28S calculators. Flag
35 should be clear for numeric results, otherwise 𝜋 remains in the returned
result. For the test cases in Appendix M, the maximum error is about 6
digits in the last place.

EPRA (about 118 bytes)

Code Comment

«
DUP2 + ROT ROT − OVER / Find 𝜆 and 𝑎 + 𝑏
DUP 10 ^ 2.28881835938E-5 * Find 𝑐𝜆10

SWAP SQ 3 * Find 𝐿 = 3𝜆2

DUP 4 SWAP − √ Find 𝑀 =
√

4 − 𝐿
10 + / Find 𝑄 = 𝐿/(10 + 𝑀)
1 + + Find 1 + 𝑄 + 𝑐𝜆10

* 𝜋 * Find 𝑃 = 𝜋(𝑎 + 𝑏)(1 + 𝑄 + 𝑐𝜆10)
»

G: HP 32s Ramanujan approximation
This program for the Ramanujan approximation program works with the
various versions of the HP 32S; I used a 32SII for testing. Storage register
Z is used, as well as all stack levels. The program uses 63.5 bytes.
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Line Code 𝑥 𝑦 𝑧 𝑡 Comment

A01 LBL A 𝑏 𝑎 ? ? Find 𝑏 − 𝑎
A02 ENTER 𝑏 𝑏 𝑎 ?
A03 R↓ 𝑏 𝑎 ? 𝑏
A04 X<>Y 𝑎 𝑏 ? 𝑏
A05 − 𝑏 − 𝑎 ? 𝑏 𝑏
A06 LAST𝑥 𝑎 𝑏 − 𝑎 ? 𝑏 Find 𝑏 + 𝑎
A07 R↑ 𝑏 𝑎 𝑏 − 𝑎 ?
A08 + 𝑏 + 𝑎 𝑏 − 𝑎 ? ?
A09 STO Z 𝑏 + 𝑎 𝑏 − 𝑎 ? ? Save 𝑏 + 𝑎
A10 ÷ 𝜆 ? ? ? Find 𝜆
A11 3 3 𝜆 ? ? Find 𝐿 = 3𝜆2

A12 X<>Y 𝜆 3 ? ?
A13 𝑥2 𝜆2 3 ? ?
A14 × 𝐿 ? ? ?
A15 LAST𝑥 𝜆2 𝐿 ? ? Find 𝑐𝜆10

A16 5 5 𝜆2 𝐿 ?
A17 𝑦𝑥 𝜆10 𝐿 ? ?
A18 𝑐∗ 𝑐∗ 𝜆10 𝐿 ?
A19 × 𝑅 𝐿 ? ? 𝑅 = 𝑐𝜆10

A20 X<>Y 𝐿 𝑅 ? ? 𝑀 =
√

4 − 𝐿
A21 4 4 𝐿 𝑅 ?
A22 X<>Y 𝐿 4 𝑅 ?
A23 − 4 − 𝐿 𝑅 ? ?
A24 LAST𝑥 𝐿 4 − 𝐿 𝑅 ?
A25 X<>Y 4 − 𝐿 𝐿 𝑅 ?
A26 SQRT 𝑀 𝐿 𝑅 ?
A27 10 10 𝑀 𝐿 𝑅
A28 + 𝑀 + 10 𝐿 𝑅 𝑅
A29 ÷ 𝑄 𝑅 𝑅 𝑅 𝑄 = 𝐿/(𝑀 + 10)
A30 + 𝑄 + 𝑅 𝑅 𝑅 𝑅
A31 1 1 𝑄 + 𝑅 𝑅 𝑅
A32 + 𝑆 𝑅 𝑅 𝑅 𝑆 = 1 + 𝑄 + 𝑅
A33 RCL Z 𝑎 + 𝑏 𝑆 𝑅 𝑅
A34 × 𝑆(𝑎 + 𝑏) 𝑅 𝑅 𝑅
A35 𝜋 𝜋 𝑆(𝑎 + 𝑏) 𝑅 𝑅
A36 × 𝑃 𝑅 𝑅 𝑅
A37 RTN
∗𝑐 = 2.28881835938E-5

H: HP 33s, 35s Ramanujan approximation
The program above for the HP 32 series could be used for the HP 35s, but
we can use some direct register arithmetic instructions to save a few bytes,
since we need to use a storage register, anyway. All the stack levels and
register Z are used. For the 35s program size is 121 bytes and the checksum
(for what it’s worth) is 246A. This program also works with the 33s, with
program size 171 and checksum 1A99.
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Line Code 𝑥 𝑦 𝑧 𝑡 Z Comment

A001 LBL A 𝑏 𝑎 ? ? ?
A002 STO Z 𝑏 𝑎 ? ? 𝑏
A003 X<>Y 𝑎 𝑏 ? ? 𝑏
A004 STO− Z 𝑎 𝑏 ? ? 𝑏 − 𝑎
A005 + 𝑎 + 𝑏 ? ? ? 𝑏 − 𝑎
A006 STO÷ Z 𝑎 + 𝑏 ? ? ? −𝜆 −𝜆 =
A007 X<> Z −𝜆 ? ? ? 𝑎 + 𝑏 (𝑏 − 𝑎)/(𝑎 + 𝑏)
A008 3 3 −𝜆 ? ? 𝑎 + 𝑏
A009 X<>Y −𝜆 3 ? ? 𝑎 + 𝑏
A010 𝑥2 𝜆2 3 ? ? 𝑎 + 𝑏
A011 × 𝐿 ? ? ? 𝑎 + 𝑏 𝐿 = 3𝜆2

A012 LAST𝑥 𝜆2 𝐿 ? ? 𝑎 + 𝑏
A013 5 5 𝜆2 𝐿 ? 𝑎 + 𝑏
A014 𝑦𝑥 𝜆10 𝐿 ? ? 𝑎 + 𝑏
A015 𝑐 𝑐∗ 𝜆10 𝐿 ? 𝑎 + 𝑏 (see below)
A016 × 𝑅 𝐿 ? ? 𝑎 + 𝑏
A017 X<>Y 𝐿 𝑅 ? ? 𝑎 + 𝑏 𝑅 = 𝑐𝜆10

A018 4 4 𝐿 𝑅 ? 𝑎 + 𝑏
A019 X<>Y 𝐿 4 𝑅 ? 𝑎 + 𝑏
A020 − 4 − 𝐿 𝑅 ? ? 𝑎 + 𝑏
A021 LAST𝑥 𝐿 4 − 𝐿 𝑅 ? 𝑎 + 𝑏
A022 X<>Y 4 − 𝐿 𝐿 𝑅 ? 𝑎 + 𝑏
A023 √𝑥 𝑀 𝐿 𝑅 ? 𝑎 + 𝑏 𝑀 =

√
4 − 𝐿

A024 10 10 𝑀 𝐿 𝑅 𝑎 + 𝑏
A025 + 𝑀 + 10 𝐿 𝑅 𝑅 𝑎 + 𝑏
A026 ÷ 𝑄 𝑅 𝑅 𝑅 𝑎 + 𝑏 𝑄 = 𝐿/(10+𝑀)
A027 + 𝑄 + 𝑅 𝑅 𝑅 𝑅 𝑎 + 𝑏
A028 1 1 𝑄 + 𝑅 𝑅 𝑅 𝑎 + 𝑏
A029 + 𝑆 𝑅 𝑅 𝑅 𝑎 + 𝑏 𝑆 = 𝑄 + 𝑅 + 1
A030 STO× Z 𝑆 𝑅 𝑅 𝑅 𝑆(𝑎 + 𝑏)
A031 𝜋 𝜋 𝑆 𝑅 𝑅 𝑆(𝑎 + 𝑏)
A032 RCL× Z 𝑃 𝜋 𝑆 𝑅 𝑆(𝑎 + 𝑏) 𝑃 = 𝜋(𝑎 + 𝑏)𝑆
A033 RTN
∗𝑐 = 2.288 8183 5939E−5

I: HP 39g Ramanujan approximation
(This program is more of a curiosity than anything else. This is the first
program I’ve written for the 39g and also likely the last. All I’ve got
for documentation is the User’s Guide, which is a little slim on actual
programming details: for example, how to return a program result to the
history stack? how to take program arguments from the history stack? and
so on.)

Program EPR implements Ramnujan’s approximation EPR prompts for
the two semi-axes A and B, then displays the perimeter on the graphics
screen. The perimeter is also saved in real variable P. EPR uses real variables
C and D. I only tested a few values for 𝑎 and 𝑏; they matched the 50g results
to within one or two units in the last place. The calculation is essentially
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the same as the 50g version, but converted into algebraic. The perimeter
can be retrieved after the program runs from variable P.

EPR (0.16 KB)

PROMPT A: PROMPT B: Prompt for (and save) axes A and B
(A-B)/(A+B)� C: Find C = 𝜆
3*C2� D: Find D = 3𝜆2

(2.28881835938E-5*C^10 + Find 3𝜆10/217

D/(10+ √ (4-D))+ 1) Finish perimeter calculation …
*(A+B)*𝜋 � P: … and save perimeter in P
ERASE: Clear the graphics screen
DISP 1; ”ELLIPSE PERIMETER=”: Display label on display line 1 …
DISP 2; P: … and the perimeter on line 2
FREEZE Freeze the graphics display

J: HP 42s Ramanujan approximation
With the HP-42s we have some memory and a more sophisticated instruc-
tion set, compared to some other calculators in this paper, so we’ll use
those features to write a slightly different ellipse perimeter program. It
is usually preferable that function evaluation programs mimic the built-in
functions such that storage registers are undisturbed and the stack regis-
ters are restored. For example, the ellipse perimeter program has two input
arguments 𝑎 and 𝑏 and a single result 𝑃, so we would like the stack I/O
diagram to look like

𝑡 ⟨𝑡⟩ ⟨𝑡⟩
𝑧 ⟨𝑧⟩ ⟨𝑡⟩
𝑦 𝑏 ⟹ ⟨𝑧⟩
𝑥 𝑎 𝑃

where the notation ⟨R⟩ means ‘the original contents of register R’. We could
build the code for this into the ellipse perimeter program, but memory is
limited on the 42s. We may well have other function programs which need
the same save and restore functionality, so I wrote two programs to that
end. Program SZT0 saves stack levels 𝑧 and 𝑡 and register R00 in named
variables. Program RZT0 restores the saved values and deletes the named
variables. Of course this feature increases code size and execution time, so
it becomes a matter of your priorities and preferences. The total required
memory to use EPR is 149 bytes, but STZ0 and RTZ0 can be used with other
programs.

Code listings for SZT0, RZT0, and ERP are given below. ERP calcu-
lates the ellipse perimeter, with calls to SZT0 and RZT0 at lines 2 and 32,
respectively.
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SZT0 — Save stack levels 𝑧, 𝑡, and R00 (28 bytes)

Line Code 𝑥 𝑦 𝑧 𝑡

01 LBL ”STZ0” ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩ ⟨𝑡⟩
02 R↑ ⟨𝑡⟩ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩
03 STO ”0T” ⟨𝑡⟩ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩
04 R↓ ⟨𝑦⟩ ⟨𝑧⟩ ⟨𝑥⟩ ⟨𝑥⟩
05 STO ”0Z” ⟨𝑧⟩ ⟨𝑡⟩ ⟨𝑥⟩ ⟨𝑦⟩
06 R↓ ⟨𝑡⟩ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩
07 RCL 00 ⟨R00⟩ ⟨𝑡⟩ ⟨𝑥⟩ ⟨𝑦⟩
08 STO ”0R0” ⟨R00⟩ ⟨𝑡⟩ ⟨𝑥⟩ ⟨𝑦⟩
09 R↑ ⟨𝑦⟩ ⟨R00⟩ ⟨𝑡⟩ ⟨𝑥⟩
10 R↑ ⟨𝑥⟩ ⟨𝑦⟩ ⟨R00⟩ ⟨𝑡⟩
11 RTN ⟨𝑥⟩ ⟨𝑦⟩ ⟨R00⟩ ⟨𝑡⟩

RZT0 — Restore stack levels 𝑧, 𝑡, and R00 (42 bytes)

Line Code 𝑥 𝑦 𝑧 𝑡

01 LBL ”RTZ0” ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩ ⟨𝑡⟩
02 RCL ”0R0” ⟨0R0⟩ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩
03 STO 00 ⟨0R0⟩ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩
04 R↓ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩ ⟨0R0⟩
05 RCL ”0T” ⟨0T⟩ ⟨𝑥⟩ ⟨𝑦⟩ ⟨𝑧⟩
06 RCL ”0T” ⟨0T⟩ ⟨0T⟩ ⟨𝑥⟩ ⟨𝑦⟩
07 RCL ”0Z” ⟨0Z⟩ ⟨0T⟩ ⟨0T⟩ ⟨𝑥⟩
08 R↑ ⟨𝑥⟩ ⟨0Z⟩ ⟨0T⟩ ⟨0T⟩
09 CLV ”0T” ⟨𝑥⟩ ⟨0Z⟩ ⟨0T⟩ ⟨0T⟩
10 CLV ”0Z” ⟨𝑥⟩ ⟨0Z⟩ ⟨0T⟩ ⟨0T⟩
11 CLV ”0R0” ⟨𝑥⟩ ⟨0Z⟩ ⟨0T⟩ ⟨0T⟩
12 RTN

EPR — Ramanujan Ellipse Approximation (79 bytes)

Line Code

01 LBL ”EPR”
02 XEQ ”SZT0”
03 RCL ST Y
04 X<>Y
05 −
06 LAST𝑥
07 RCL ST Z
08 +
09 STO 00
10 ÷
11 X↑2
12 STO ST Y
13 3

Line Code

14 ×
15 4
16 X<>Y
17 −
18 LAST𝑥
19 X<>Y
20 SQRT
21 10
22 +
23 ÷
24 X<>Y
25 5
26 Y↑X

Line Code

27 𝑐∗

28 ×
29 +
30 1
31 +
32 STO× 00
33 RCL 00
34 PI
35 ×
36 XEQ ”RZT0”
37 RTN

∗𝑐 = 2.288 8183 5938 E-5
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K: HP 48 series Ramanujan approximation
The 50g program ELPRA is used as a starting point for this program EPR
for the HP 48 series calculators; I used a 48GX. The 48 series calculators
lack the UNROT command, so ROT ROT is used instead. System flag −2
should be set for numeric results; otherwise 𝜋 remains in the result.

EPR (121.5 bytes, checksum#5BA0)

«
DUP2 − Find 𝑎 − 𝑏
ROT ROT + Find 𝑎 + 𝑏
DUP 𝜋 * Find 𝑘 = 𝜋(𝑎 + 𝑏)
ROT ROT / Find 𝜆 = (𝑎 − 𝑏)/(𝑎 + 𝑏)
DUP SQ 3 * DUP Find 𝐿 = 3𝜆2

4 SWAP − √ Find 𝑀 =
√

4 − 𝐿
10 + / 1 + Find 𝑄 + 1 = 𝐿/(10 + 𝑀)
SWAP 10 ^ 2.28881835938E-5 * Find 𝑐𝜆10

+ * Find 𝑃 = 𝑘(1 + 𝑄 + 𝑐𝜆10)
»

L: HP 95LX Ramanujan approximation
The 95LX is a handheld computer, or pocket computer, and unfortunately
does not have any programming languages built-in. It does have a version
of the Lotus 123 spreadsheet, which can be used to calculate the Ramnujan
approximation. The table below specifies the cell entries.

Cell Cell contents

A1 'a=
A2 'b=
B1 semi-major axis 𝑎
B2 semi-major axis 𝑏
C1 'lambda: (optional)
C2 '3*lam^2 (optional)
D1 (B1−B2)/(B1+B2)
D2 3*D1^2
A4 'Perimeter:
A5 @PI*(B1+B2)*(1+D2/(10+@SQRT(4−D2))+3*D1^10/2^17)

C1 and C2 are labels for D1 and D2 and need not be entered. Semi-axes 𝑎
and 𝑏 are entered in B1 and B2, with the perimeter shown in cell A5.

M: Ellipse perimeter test cases
The table below lists some test values for 𝑎 and 𝑏 which may be used to test
programs for calculating the Ramanujan approximation 𝑃R. The value for
𝜆 is also given, as well as the actual value of the perimeter 𝑃ACT.
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𝑎 𝑏 𝜆 = (𝑎 − 𝑏)/(𝑎 + 𝑏) 𝑃R 𝑃ACT

1.0 1.0 0 6.2831 85307 17959 6.2831 85307 17959
1.25 1.0 0.11111 11111 11111 7.0904 16972 24362 7.0904 16972 24362
1.5 1.0 0.20000 00000 00000 7.9327 19794 64402 7.9327 19794 64529
1.9 1.0 0.31034 48275 86207 9.3313 42102 01233 9.3313 42102 31999
2.3 1.0 0.39393 93939 39394 10.773 53733 57045 10.773 53734 23153
3.0 1.0 0.50000 00000 00000 13.364 89306 07070 13.364 89322 05553
4.0 1.0 0.60000 00000 00000 17.156 84143 63427 17.156 84355 03137
5.7 1.0 0.70149 25373 13433 23.730 07592 40255 23.730 09935 88423
9.0 1.0 0.80000 00000 00000 36.687 58358 21579 36.687 81772 76102
19.0 1.0 0.90000 00000 00000 76.400 42095 25457 76.403 59077 05161
39.0 1.0 0.95000 00000 00000 156.21 56750 26899 156.23 33761 19845
199.0 1.0 0.99000 00000 00000 795.83 31302 82852 796.06 21070 57088
103 1.0 0.99800 19980 01998 3998.5 72446 23787 4000.0 15588 10469
104 1.0 0.99980 00199 98000 39984. 72878 48971 40000. 00201 93270

N: References

[1] NIST Handbook of Mathematical Functions, Frank W. J. Olver et al,
2010, Cambridge University Press. See section 19.9, p494. Also avail-
able at dlmf.nist.gov.

[2] Gauss, Landen, Ramanujan, the Arithmetic-Geometric Mean, Ellipses,
𝜋, and the Ladies Diary, Gert Alvkvist and Bruce Berndt, 1988, The
American Mathematical Monthly, Vol. 95 No. 7, Mathematical As-
sociation of America. I found a copy at archive.org, which is down
as of this writing. You may be able to find the article with the doi:
10.2307/2323302.

[3] Handbook of Mathematics and Computational Science, John W. Haris
and Horst Stocker, 1998, Springer-Verlag. For general information
about ellipses you could certainly check Wikipedia and other online
sources. For a printed reference, this handbook is a good choice. Sec-
tion 3.8.7 defines the major and minor semi-axes, gives the exact ex-
pression the ellipse area, and a very crude estimation for the perimeter:

𝑃 ≈ 𝜋 (1.5(𝑎 + 𝑏) +
√

𝑎𝑏)

Section 8.4 gives most of the common ellipse properties and relations,
including equations in various forms and coordinate systems, diame-
ters, tangents, curvature, and equations for areas of a segments and a
sector. A better estimate of the complete perimeter is given as

𝑃 ≈ 𝜋(𝑎 + 𝑏) 64 − 3𝜆4

64 − 16𝜆2 , 𝜆 = 𝑎 − 𝑏
𝑎 + 𝑏

[4] Perimeter of an Ellipse, Final Answers, Gérard P. Michon, 2023-08-19,
https://www.numericana.com/answer/ellipse.htm#elliptic. Describes al-
most two dozen ellipse perimeter approximations; oddly does not ap-
pear to include Ramanujan’s better approximation used in this paper.
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[5] Srinivasa Ayengar Ramanujan, Roy Porter and Marilyn Ogilvie, eds.,
2000, The Biographical Dictionary of Scientists. This entry is a short
summary of Ramanujan’s life and work.

[6] The Man Who Knew Infinity, Robert Kanigel, 1991, Charles Scribner’s
Sons. Kamigel’s book is a detailed popular biography of Ramanujan’s
life and work. Ramanujan’s mathematics is described in a little more
detail than in most books like this, and Kanigel successfully explains
why Ramanujan’s work is so important.

[7] Srinivasa Aiyangar Ramanujan, J. J. O’Conner and E. F. Robert-
son, 1998, the MacTutor website (https://mathshistory.st-andrews.ac.
uk/Biographies/Ramanujan/). A shorter read than Kanigel’s book, but
covers most of the high points. Includes 32 additional references.

[8] Chebyshev Approximations for the Complete Elliptic Integrals 𝐾 and
𝐸, W. J. Cody, 1965, Mathematics of Computation v19, pp. 105–112.
This table describes the process used to calculate the coefficients of the
Chebyshev polynomial approximations for orders 2 through 10. The
maximum absolute approximation errors for the approximations are
listed in table Ia. The lower-order approximations may be candidates
for use with calculators without as much memory as the 50g. Note
that a subsequent corrigenda corrects an error in Table III: the value
of 𝑐7 for 𝑛 = 8 should be 7.33561 64974 29036 5 (−03).

24

https://mathshistory.st-andrews.ac.uk/Biographies/Ramanujan/
https://mathshistory.st-andrews.ac.uk/Biographies/Ramanujan/

	Introduction
	50g program ELPRA
	Ellipse perimeter with elliptic integral E(k)
	Ellipse segment arc length via direct integration
	Srinavasa Ayengar Ramanujan
	About the programs
	HP-11C Ramanujan approximation
	HP-15C Ramanujan approximation
	HP-16C Ramanujan approximation
	HP-20S Ramanujan approximation
	HP-28 Ramanujan approximation
	HP 32s Ramanujan approximation
	HP 33s, 35s Ramanujan approximation
	HP 39g Ramanujan approximation
	HP 42s Ramanujan approximation
	HP 48 series Ramanujan approximation
	HP 95LX Ramanujan approximation
	Ellipse perimeter test cases
	References

