
Audio EQ Cookbook HP15c CE software pac
Pepin Torres, P.E. pepin[dot]torres[at]gmail[dot]com

Introduction:

This software pac calculates all the filters coefficients and related parameters as defined in the
classic document Cookbook formulae for audio equalizer biquad filter coefficients.

Who is this for?

This software pac is for any audio enthusiants, audio engineers, or software engineers that need to
generate the coefficients for any of the 9 different filters in the cookbook (when there is no
computer in sight). Furthermore, this pac also calculates the complex frequency response of any
of the 9 filters at any arbitrary frequency fx. One use-case would be to generate the coefficients of a
filter with center frequency f0 and calculate the complex response for a set of frequencies fx (think of
being able to plot the response by sampling at different fx frequencies). Another use-case would be
to run this program for a set of filters with different center frequencies f0 and evaluate each filter at a
fixed fx to understand the gain/phase contributions of each filter at fx (think of an EQ with multiple
bands that overlap fx).

Main Programs:

Program C – Calculate all filter coefficients

Registers required before running: R9, R.0, R.1, R.2
where:
R9 = Fs (sampling frequency in Hz)
R.0 = f0 (center frequency in Hz)
R.1 = Q (set manually, or run Prog A or Prog B to do so automatically, Q>0)
R.2 = A (see Prog A, A>0)
where f0 is the center frequency of the filter (or cutoff frequency for shelf filters)

Registers modified: R.3, R.4, R.5, R.6, R.7, R.8, R.9

This program will use the parameters in R9, R.0, R.1, and R.2 to calculate all the
coeffcients for the 9 digital filters defined in the Cookbook. Given the repetition of the an
coeffcients for the Low-Pass, High-Pass, Band-Pass Q peak, Band-Pass 0dB peak, Notch,
and All-Pass filters, the a0, a1, and a2 calculation is performed and stored only once.

The output is placed into two matrices, the A matrix containing all the an coeffcients of size
[4-by-3] and the B matrix containing all the bn coeffcients of size [9-by-3].

https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html

Example:

R9 = 48KHz = 48,000.0
R.0 = f0 = 1KHz = 1,000.0
R.1 = Q = 2.8627260504
R.2 = A = 1.0

Key Strokes Display Description

GSB C 0.000001330 Stack has no useful data. All
results are in Matrix A and
Matrix B

Matrices after running Prog C:

Register states after running:

R9 Fs

R.0 f0

R.1 Q
R.2 A
R.3 sin(ω0)
R.4 cos(ω0)
R.5 α
R.6 A-1
R.7 A+1
R.8 2√Aα
R.9 BW

Program D – Calculate filter response H(ωx) at arbitrary frequecy fx

Given Matrices A and B as calculated for center frequency f0 at sampling rate Fs, program D will
calculate the frequency response of the filter at frequency fx returned as a complex number on the x-
register.

Registers needed: All the registers and matrices from running Program C.
Registers modified: R6, R7, R8

For this you need to look up the row index in matrix B corresponding to the filter you want to use.
The following table provides this:

Filter Coeffiecients
Location

Row Matrix A

Coeffiecients
Location

Row Matrix B

Low Pass 1 1

High Pass 1 2

Band Pass Q peak gain 1 3

Band Pass 0dB peak gain 1 4

Notch Filter 1 5

All-Pass Filter 1 6

Peaking 2 7

Low Shelf 3 8

High Shelf 4 9

Example:

Get frequency response for the Bandpass Filter 0dB peak gain (with center frequency f0 = 1KHz and
Fs=48KHz) evaluated at fx = 840Hz:

t-regsiter -

z-register -

y-register 4

x-register 840

Key Strokes Display Description

4 4 Row 4 of Matrix B

ENTER 4.0000

840 840 fx, Frequency of interest

GSB D 0.4971 Real of H(ωx)

f (i) 0.4999 Imag of H(ωx)

Note: Calculator will go into Complex Mode after this program

Running program D results in 3 more matrices being created C, D and E:

Matrix C [3x2] contains the real and imaginary parts of z=ej2πfx/Fs
 , z-1, and z-2.

Matrix D [4x2] contains the real and imaginary parts of Σ anz-n where n={0,1,2}
Matrix E [9x2] contains the real and imaginary parts of Σ bnz-n where n={0,1,2}

Powers of z for frequency fx = 840.0000
z^0 = (1.00000000,0.00000000)
z^-1 = (0.99396096,-0.10973431)
z^-2 = (0.97591676,-0.21814324)

Intermediate complex vectors.
E = sum(bn * zx^-n) D = sum(an * zx^-n)

LPF E(1) 0.016956 + -0.001872j D(1) 0.005551 + 0.004421j
HPF E(2) -0.011954 + 0.001320j D(2) 0.005551 + 0.004421j
BPF Q E(3) 0.001572 + 0.014237j D(3) 0.005551 + 0.004421j
BPF 0dB E(4) 0.000549 + 0.004973j D(4) 0.005551 + 0.004421j
NOTCH E(5) 0.005002 + -0.000552j D(5) 0.005551 + 0.004421j
ALL-PASS E(6) 0.004453 + -0.005525j D(6) 0.005551 + 0.004421j
PEAKING E(7) 0.005551 + 0.004421j D(7) 0.005551 + 0.004421j
LOW SHELF E(8) 0.011102 + 0.008842j D(8) 0.011102 + 0.008842j
HIGH SHELF E(9) 0.011102 + 0.008842j D(9) 0.011102 + 0.008842j

Frequency response evaluated at fx = 840.0000 [H(x) =
E(wx)/D(wx)]

LPF H(2*pi*840Hz) = 1.70469312 + -1.69492177j
HPF H(2*pi*840Hz) = -1.20181890 + 1.19493003j
BPF Q H(2*pi*840Hz) = 1.42313489 + 1.43133938j
BPF 0dB H(2*pi*840Hz) = 0.49712577 + 0.49999174j
NOTCH H(2*pi*840Hz) = 0.50287423 + -0.49999174j
ALL-PASS H(2*pi*840Hz) = 0.00574846 + -0.99998348j
PEAKING H(2*pi*840Hz) = 1.00000000 + 0.00000000j
LOW SHELF H(2*pi*840Hz) = 1.00000000 + 0.00000000j
HIGH SHELF H(2*pi*840Hz) = 1.00000000 + 0.00000000j

The complex-valued H(ωx) in the x-register comes from:

H(fx) = (Σ bn·z-n) / (Σ an·z-n)
 = (E[idxB,1]+jE[idxB,2])/(D[idxA,1]+jD[idxA,2])

Plot of BPF filter with center frequency f0 and transfer function evaluaed at fx

Auxilliary Programs:

Program A – Calculate A

Registers modified: R.1, R.2

This program is used to calculate the A = 10dBgain/40 parameter when designing Peaking, Low-
Shelf and High-Shelf filters. Put the gain in dB in x-register and press GSB A. The A value
will be placed in the x-register as well as stored in register R.2 automatically. If not
interested in those filters, put 0.0 in the x-register then press GSB A to populate R.2 (or
manually store 1.0 in R.2).

Note: R.2 > 0.0 is required by the main Program C.

Example: dBGain = 3dB

Key Strokes Display Description

3 3 Gain in dB

GSB A 1.1885 A is also stored in R.2

After running:
Q is in R.1
A is in R.2

Program B – Calculate Bandwidth given Q

Registers required before running: R9, R.0
where:
R9 = Fs (sampling frequency in Hz)
R.0 = ω0 = 2πf0/Fs (angular frequency in rad)

This program is used to calculate the filter bandwidth (in multiples of an octave) given Q, f0 ,
Fs and Q. It also calculate ω0 which is used extensively in Program C.

Example:
Filter center frequency: f0 = 1KHz
Sampling frequency: Fs = 48KHz
Quality Factor: Q = 2.862726050

Key Strokes Display Description

0.5 0.5 Bandwidth (in multiples of an octave)

GSB B 1.0

After running:
Q is stored in R.1
A is stored in R.2
Bandwidth is stored in R.9 (for reference only)

Extra Mini Programs:
These are two very short programs in the .mem file (but not in the listing file) that convert filter gain
to and from dB.

Program 0 – Calculate Linear → dB

This program will take the absolute value of the x-register and do 20log10(abs(x-reg))

Program 1 – Calculate dB → Linear

This program will take the absolute value of the x-register and do 10^(x-reg / 20)

Technical Notes:

Given how much program memory this code needs (528 bytes) and the size of the matrices A thru E
(568 bytes), the provided image can only be run in 15.2 mode and the author strongly recommends
keeping the allocation to the default amount of 19 memory registers. The programs will not run in
default 15 mode and allocating more than 19 registers might cause unexpected behavior up to and
including freezing (requiring a hard reset.)

Supporting Docs:

audio_eq_cookbook.xlsx – This sheet has the full program listing and the state of the stack for every
instruction. It also provides a worked out example for a given set of parameters so users can verify
all calculations are correct.

audio_eq_cookbook.m – This Matlab/Octave script calculates all the parameters and is meant to be a
way to validate the calculator output. It will plot the filter response and place markers on f0 and fx.

function [C,Hx,Hsweep] = sanity_check(Fs,f0,BW,A,fx)

???

Page

??? (???)

00/00/0000, 00:00:00

Page /

???

???

???

Page

Page

Page

		

						MATRIX B

		MATRIX A

		

						b0

		b1

		b2

		 a0

		a1

		 a2

		Type

		

				1

		0.004278

		0.008555

		0.004278

		1.022798

		-1.98289

		0.977202

		LPF

		

				2

		0.995722

		-1.991445

		0.995722

		HPF

		

				3

		0.065263

		0

		-0.065263

		BPF Q

		

				4

		0.022798

		0

		-0.022798

		BOF 0dB

		

				5

		1

		-1.98289

		1

		Notch

		

				6

		0.977202

		-1.98289

		1.022798

		APF

		

				7

		1.022798

		-1.98289

		0.977202

		1.022798

		-1.98289

		0.977202

		Peaking*

		

				8

		2.045595

		-3.965779

		1.954405

		2.045595

		-3.965779

		1.954405

		Low Shelf

		

				9

		2.045595

		-3.965779

		1.954405

		2.045595

		-3.965779

		1.954405

		High Shelf

		

		

				For filters 1-6, the an coefficients are identical

		

				* For Peaking filter, the an coefficients will be different if A ≠ 1

		

		

		

Audio EQ Cookbook HP15c CE software pac

Pepin Torres, P.E. pepin[dot]torres[at]gmail[dot]com

Introduction:

This software pac calculates all the filters coefficients and related parameters as defined in the classic document Cookbook formulae for audio equalizer biquad filter coefficients.

Who is this for?

This software pac is for any audio enthusiants, audio engineers, or software engineers that need to generate the coefficients for any of the 9 different filters in the cookbook (when there is no computer in sight). Furthermore, this pac also calculates the complex frequency response of any of the 9 filters at any arbitrary frequency fx. One use-case would be to generate the coefficients of a filter with center frequency f0 and calculate the complex response for a set of frequencies fx (think of being able to plot the response by sampling at different fx frequencies). Another use-case would be to run this program for a set of filters with different center frequencies f0 and evaluate each filter at a fixed fx to understand the gain/phase contributions of each filter at fx (think of an EQ with multiple bands that overlap fx).

Main Programs:

Program C – Calculate all filter coefficients

Registers required before running: R9, R.0, R.1, R.2

	where:

R9 = Fs (sampling frequency in Hz)

R.0 = f0 (center frequency in Hz)

R.1 = Q (set manually, or run Prog A or Prog B to do so automatically, Q>0)

R.2 = A (see Prog A, A>0)

where f0 is the center frequency of the filter (or cutoff frequency for shelf filters)

Registers modified: R.3, R.4, R.5, R.6, R.7, R.8, R.9

This program will use the parameters in R9, R.0, R.1, and R.2 to calculate all the coeffcients for the 9 digital filters defined in the Cookbook. Given the repetition of the an coeffcients for the Low-Pass, High-Pass, Band-Pass Q peak, Band-Pass 0dB peak, Notch, and All-Pass filters, the a0, a1, and a2 calculation is performed and stored only once.

The output is placed into two matrices, the A matrix containing all the an coeffcients of size [4-by-3] and the B matrix containing all the bn coeffcients of size [9-by-3].

Example:

R9 = 48KHz = 48,000.0

R.0 = f0 = 1KHz = 1,000.0

R.1 = Q = 2.8627260504

R.2 = A = 1.0

		Key Strokes

		Display

		Description

		GSB C

		0.000001330

		Stack has no useful data. All results are in Matrix A and Matrix B

Matrices after running Prog C:

Register states after running:

		R9

		Fs

		R.0

		f0

		R.1

		Q

		R.2

		A

		R.3

		sin(ω0)

		R.4

		cos(ω0)

		R.5

		α

		R.6

		A-1

		R.7

		A+1

		R.8

		2√Aα

		R.9

		BW

Program D – Calculate filter response H(ωx) at arbitrary frequecy fx

Given Matrices A and B as calculated for center frequency f0 at sampling rate Fs, program D will calculate the frequency response of the filter at frequency fx returned as a complex number on the x-register.

	Registers needed: All the registers and matrices from running Program C.

Registers modified: R6, R7, R8

For this you need to look up the row index in matrix B corresponding to the filter you want to use. The following table provides this:

		Filter

		Coeffiecients Location

Row Matrix A

		Coeffiecients Location Row Matrix B

		Low Pass

		1

		1

		High Pass

		1

		2

		Band Pass Q peak gain

		1

		3

		Band Pass 0dB peak gain

		1

		4

		Notch Filter

		1

		5

		All-Pass Filter

		1

		6

		Peaking

		2

		7

		Low Shelf

		3

		8

		High Shelf

		4

		9

Example:

Get frequency response for the Bandpass Filter 0dB peak gain (with center frequency f0 = 1KHz and Fs=48KHz) evaluated at fx = 840Hz:

		t-regsiter

		-

		z-register

		-

		y-register

		4

		x-register

		840

		Key Strokes

		Display

		Description

		4

		4

		Row 4 of Matrix B

		ENTER

		4.0000

		

		840

		840

		fx, Frequency of interest

		GSB D

		0.4971

		Real of H(ωx)

		f (i)

		0.4999

		Imag of H(ωx)

Note: Calculator will go into Complex Mode after this program

Running program D results in 3 more matrices being created C, D and E:

Matrix C [3x2] contains the real and imaginary parts of z=ej2πfx/Fs , z-1, and z-2.

Matrix D [4x2] contains the real and imaginary parts of Σ anz-n where n={0,1,2}

Matrix E [9x2] contains the real and imaginary parts of Σ bnz-n where n={0,1,2}

		

		Powers of z for frequency fx = 840.0000

		

		z^0 = (1.00000000,0.00000000)

		

		z^-1 = (0.99396096,-0.10973431)

		

		z^-2 = (0.97591676,-0.21814324)

		

		

		

		Intermediate complex vectors.

		

		E = sum(bn * zx^-n) D = sum(an * zx^-n)

		LPF

		E(1) 0.016956 + -0.001872j D(1) 0.005551 + 0.004421j

		HPF

		E(2) -0.011954 + 0.001320j D(2) 0.005551 + 0.004421j

		BPF Q

		E(3) 0.001572 + 0.014237j D(3) 0.005551 + 0.004421j

		BPF 0dB

		E(4) 0.000549 + 0.004973j D(4) 0.005551 + 0.004421j

		NOTCH

		E(5) 0.005002 + -0.000552j D(5) 0.005551 + 0.004421j

		ALL-PASS

		E(6) 0.004453 + -0.005525j D(6) 0.005551 + 0.004421j

		PEAKING

		E(7) 0.005551 + 0.004421j D(7) 0.005551 + 0.004421j

		LOW SHELF

		E(8) 0.011102 + 0.008842j D(8) 0.011102 + 0.008842j

		HIGH SHELF

		E(9) 0.011102 + 0.008842j D(9) 0.011102 + 0.008842j

		

		

		

		Frequency response evaluated at fx = 840.0000 [H(x) = E(wx)/D(wx)]

		LPF

		H(2*pi*840Hz) = 1.70469312 + -1.69492177j

		HPF

		H(2*pi*840Hz) = -1.20181890 + 1.19493003j

		BPF Q

		H(2*pi*840Hz) = 1.42313489 + 1.43133938j

		BPF 0dB

		H(2*pi*840Hz) = 0.49712577 + 0.49999174j

		NOTCH

		H(2*pi*840Hz) = 0.50287423 + -0.49999174j

		ALL-PASS

		H(2*pi*840Hz) = 0.00574846 + -0.99998348j

		PEAKING

		H(2*pi*840Hz) = 1.00000000 + 0.00000000j

		LOW SHELF

		H(2*pi*840Hz) = 1.00000000 + 0.00000000j

		HIGH SHELF

		H(2*pi*840Hz) = 1.00000000 + 0.00000000j

The complex-valued H(ωx) in the x-register comes from:

H(fx) = 	(Σ bn·z-n) / (Σ an·z-n)

	 =	(E[idxB,1]+jE[idxB,2])/(D[idxA,1]+jD[idxA,2])

Plot of BPF filter with center frequency f0 and transfer function evaluaed at fx

Auxilliary Programs:

Program A – Calculate A

	Registers modified: R.1, R.2

This program is used to calculate the A = 10dBgain/40 parameter when designing Peaking, Low-Shelf and High-Shelf filters. Put the gain in dB in x-register and press GSB A. The A value will be placed in the x-register as well as stored in register R.2 automatically. If not interested in those filters, put 0.0 in the x-register then press GSB A to populate R.2 (or manually store 1.0 in R.2).

Note: R.2 > 0.0 is required by the main Program C.

	Example: dBGain = 3dB

	

		Key Strokes

		Display

		Description

		3

		3

		Gain in dB

		GSB A

		1.1885

		 A is also stored in R.2

After running:

Q is in R.1

A is in R.2

Program B – Calculate Bandwidth given Q

Registers required before running: R9, R.0

	where:

R9 = Fs (sampling frequency in Hz)

R.0 = ω0 = 2πf0/Fs (angular frequency in rad)

This program is used to calculate the filter bandwidth (in multiples of an octave) given Q, f0 , Fs and Q. It also calculate ω0 which is used extensively in Program C.

Example:

Filter center frequency: f0 = 1KHz

Sampling frequency: Fs = 48KHz

Quality Factor: Q = 2.862726050

		Key Strokes

		Display

		Description

		0.5

		0.5

		Bandwidth (in multiples of an octave)

		GSB B

		1.0

		

After running:

Q is stored in R.1

A is stored in R.2

Bandwidth is stored in R.9 (for reference only)

Extra Mini Programs:

These are two very short programs in the .mem file (but not in the listing file) that convert filter gain to and from dB.

Program 0 – Calculate Linear → dB

This program will take the absolute value of the x-register and do 20log10(abs(x-reg))

Program 1 – Calculate dB → Linear

This program will take the absolute value of the x-register and do 10^(x-reg / 20)

Technical Notes:

Given how much program memory this code needs (528 bytes) and the size of the matrices A thru E (568 bytes), the provided image can only be run in 15.2 mode and the author strongly recommends keeping the allocation to the default amount of 19 memory registers. The programs will not run in default 15 mode and allocating more than 19 registers might cause unexpected behavior up to and including freezing (requiring a hard reset.)

Supporting Docs:

audio_eq_cookbook.xlsx – This sheet has the full program listing and the state of the stack for every instruction. It also provides a worked out example for a given set of parameters so users can verify all calculations are correct.

audio_eq_cookbook.m – This Matlab/Octave script calculates all the parameters and is meant to be a way to validate the calculator output. It will plot the filter response and place markers on f0 and fx.

	function [C,Hx,Hsweep] = sanity_check(Fs,f0,BW,A,fx)

Amplitude [dB]

H(w) for Bandpass Filter with f0 = 1KHz and fx = 840Hz

—H
X H)
0 © W)
10
20
30
10 10°

frequency [Hz]

Audio EQ Cookbonk HPISe CE software pac.
e o P i A

e
Swsnse

e
e e e,
S
T R

r—
P

e e o g .5, 2
R ——
0 s ey iy
-t e o i, €0
e e ey o el ol ey e el e

oo Gt .ok, G i 5.
R o o e P S e k. s Pl . .
oy et i e ety

Tt s o e o o i ol . oo .
i o et et

