Pendulum Period
Description
by Dr. D.G. Simpson, http://www.pgccphy.net/1030/software.html
Given the length L and amplitude θ of a simple plane pendulum, this program finds the exact period T , using the arithmetic-geometric mean method.
To run the program, enter:
L ENTER θ f A
where L is in meters and θ is in degrees. The program returns the period T in seconds.
After running the program, the calculator will be set to degrees mode.
Example:
Let L = 1.2 m and θ = 65°. Enter the above program, then type:
1.2 ENTER 65 f A
The program returns T = 2.3898 sec.
Program Resources
Labels
Name |
Description |
|
A |
Main program |
|
0 |
|
|
Storage Registers
Name |
Description |
|
.0 |
Stores the angle |
|
.1 |
Stores the length |
|
.2 |
|
|
.3 |
|
|
.4 |
Count variable |
|
Program
Line |
Display |
Key Sequence |
|
Line |
Display |
Key Sequence |
|
Line |
Display |
Key Sequence |
|
000 |
|
|
|
019 |
11 |
√x̅ |
|
038 |
11 |
√x̅ |
|
001 |
42,21,11 |
f LBL A |
|
020 |
44 .3 |
STO . 3 |
|
039 |
44 .3 |
STO . 3 |
|
002 |
43 7 |
g DEG |
|
021 |
1 |
1 |
|
040 |
42, 6, .4 |
f ISG . 4 |
|
003 |
44 .0 |
STO . 0 |
|
022 |
48 |
. |
|
041 |
22 0 |
GTO 0 |
|
004 |
34 |
x↔y |
|
023 |
0 |
0 |
|
042 |
45 .1 |
RCL . 1 |
|
005 |
44 .1 |
STO . 1 |
|
024 |
1 |
1 |
|
043 |
9 |
9 |
|
006 |
1 |
1 |
|
025 |
44 .4 |
STO . 4 |
|
044 |
48 |
. |
|
007 |
45 .0 |
RCL . 0 |
|
026 |
42,21, 0 |
f LBL 0 |
|
045 |
8 |
8 |
|
008 |
2 |
2 |
|
027 |
45 .2 |
RCL . 2 |
|
046 |
10 |
÷ |
|
009 |
10 |
÷ |
|
028 |
36 |
ENTER |
|
047 |
11 |
√x̅ |
|
010 |
24 |
COS |
|
029 |
36 |
ENTER |
|
048 |
2 |
2 |
|
011 |
40 |
+ |
|
030 |
45 .3 |
RCL . 3 |
|
049 |
20 |
× |
|
012 |
2 |
2 |
|
031 |
40 |
+ |
|
050 |
43 26 |
g π |
|
013 |
10 |
÷ |
|
032 |
2 |
2 |
|
051 |
20 |
× |
|
014 |
44 .2 |
STO . 2 |
|
033 |
10 |
÷ |
|
052 |
45 .2 |
RCL . 2 |
|
015 |
45 .0 |
RCL . 0 |
|
034 |
44 .2 |
STO . 2 |
|
053 |
10 |
÷ |
|
016 |
2 |
2 |
|
035 |
33 |
R⬇ |
|
054 |
43 32 |
g RTN |
|
017 |
10 |
÷ |
|
036 |
45 .3 |
RCL . 3 |
|
|
|
|
|
018 |
24 |
COS |
|
037 |
20 |
× |
|
|
|
|
|