Helmert’s Equation
Description
by Dr. D.G. Simpson, http://www.pgccphy.net/1030/software.html
Given the latitude θ (in degrees) and the elevation H (in meters), this program uses Helmert’s equation to find the acceleration due to gravity g.
To run the program, enter:
0.025928 STO . 1
9.80616 STO . 2
6.9 EEX 5 STO . 3
3.086 EEX 6 STO . 4
θ ENTER H f A
where θ is in degrees and H is in meters. The program returns the acceleration due to gravity g in m/s2.
After running the program, the calculator will be set to degrees mode.
Example:
Let θ = 38.898°, H = 53 m. Enter the above program, then type:
38.898 ENTER 53 f A
The program returns g = 9.80052 m/s2.
Program Resources
Labels
Name |
Description |
|
A |
Helmert’s Equation |
|
Storage Registers
Name |
Description |
|
.0 |
2 x Theta |
|
.1 |
0.025928 |
|
.2 |
9.80616 |
|
.3 |
6.9 x10^-5 |
|
.4 |
3.086 x 10^-6 |
|
Program
Line |
Display |
Key Sequence |
|
000 |
|
|
|
001 |
42,21,11 |
f LBL A |
|
002 |
43 7 |
g DEG |
|
003 |
34 |
x↔y |
|
004 |
2 |
2 |
|
005 |
20 |
× |
|
006 |
44 .0 |
STO . 0 |
|
007 |
24 |
COS |
|
008 |
45 .1 |
RCL . 1 |
|
009 |
20 |
× |
|
010 |
45 .2 |
RCL . 2 |
|
011 |
34 |
x↔y |
|
012 |
30 |
− |
|
013 |
45 .0 |
RCL . 0 |
|
014 |
24 |
COS |
|
015 |
43 11 |
g x² |
|
016 |
45 .3 |
RCL . 3 |
|
017 |
20 |
× |
|
018 |
40 |
+ |
|
019 |
34 |
x↔y |
|
020 |
45 .4 |
RCL . 4 |
|
021 |
20 |
× |
|
022 |
30 |
− |
|
023 |
43 32 |
g RTN |
|