Text Mode Layer (tml) - a Python module for HP Prime for simulating a fixed-width font terminal
version 1.00
by Piotr Kowalewski (komame), August-October 2024

What is tml and how does it work?

The tml (Text Mode Layer) module serves as a convenient replacement for the built-in terminal
on the HP Prime for Python, while also offering additional features for managing the terminal.

The module uses graphics mode to simulate a terminal using fixed-width fonts. Since the built-in
terminal is restored once the Python program finishes execution, it is not possible to use tm/ directly from
the command line. Therefore, it must be imported into a program and can only function until the program
terminates. For this reason, tml includes its own handling of text printing, screen scrolling, and user input
mechanisms. The user input handling has been implemented in such a way that it behaves similarly to
how it works on a PC, allowing data to be entered at any position on the screen, rather than being
restricted to a dedicated input field at the bottom of the screen (which is a limitation of the built-in
terminal on the HP Prime).

A status bar can be displayed at the bottom of the terminal (enabled by default), which can
display any text message. The status bar also displays keyboard indicators (Shift/Alpha).

The tml module allows the use of various monospaced bitmap fonts (different styles and sizes),
but only one can be used for a single tml instance. After loading a font, {m/ initializes a terminal with the
number of rows and columns that the selected font size permits. The largest supported font width is 35
pixels, and the smallest is 4 pixels, allowing for a terminal with 9 to 80 characters per row, respectively.

It is possible to create custom fonts and define your own key mappings for specific characters
(symbols), allowing for direct input of symbols from the keyboard, as well as their correct display, such as
for diacritical characters. Refer to the 'Advanced features' section for details.

How to start with tml?

If you are using the built-in Python app or creating your own application based on the Python
app, copy the tml.py file and one of the selected fonts (from the Fonts folder) to your application. Then, in
the main file of your application (usually main.py), import the im/ module, which will allow you to initialize
the terminal.

It is also possible to use tml through the PPL wrapper, but with this approach, it is crucial that all
PPL procedure calls are made from Python, not the other way around.

Terminal Initialization

The simplest way to initialize the terminal is to simply create an instance of {m/ without providing
any arguments:

import tml
t = tml.tml()

This approach initializes the tm/ with the following default values:
- using the first font found (details below)

- status bar enabled, with no content (")

- dark mode disabled



- tab size: 4 characters
- extended character mapping: empty (refer to ‘Advanced features’ section)
- symbol key mapping: empty (refer to ‘Advanced features’ section)
- font buffer: 9 (G9)
From the above, it can be seen that tm/ has 7 arguments, each with its own default value;
therefore, it is recommended to reference them by name.
The full constructor is as follows:

import tml
t = tml.tml(font, status = '', dark_mode = False, tab_size = 4, ext_char_map = {},
symb_key map = {}, grob = 9)

Arguments:

- font:
During initialization, tm/ automatically searches for and loads a font file (a file with extension
“font’). However, it is also possible to explicitly specify the font to be loaded using the font parameter
(when specifying the font file name explicitly, omit the '.font' extension.). If the font is not specified and
the application contains more than one font file, the first one in alphabetical order will be loaded.
The tml module package includes several sample fonts in different styles and sizes:
- atari8x8 (40 columns, 28 or 30 rows) - atari 8-bit style
- std5x10 (64 columns, 26 or 24 rows) - standard font
- std5x12d (64 columns, 18 or 20 rows) - standard font with diacritical characters
- med6x12 (53 columns, 18 or 20 rows) - medium font
- med10x12d (32 columns, 18 or 20 rows) - medium font with diacritical characters
-minidx7 (80 columns, 32 or 34 rows) - hp48/49/50 mini font style

Custom fonts can also be used, as described in ‘Advanced features’ section.

- status:

Accepts a text value to display in the status bar. By default, it is an empty value ("), which causes
the status bar to appear but contain no initial content. Entering any text into this parameter will cause it to
appear in the status bar, which is located at the bottom of the screen. When the status bar is visible, it
occupies the last two rows of the terminal and is not scrollable. To disable the status bar and make the
terminal fullscreen, set status parameter to None suring initialization. Note, however, that this will also
hide the keyboard status indicators (Shift and Alpha key states).

- dark_mode:

By default, dark mode is disabled, meaning the terminal background is white and the characters
displayed are dark. When dark mode is enabled, the background turns black and the characters are
light. To enable dark mode, set the argument to True. This parameter can only be set during terminal
initialization and cannot be changed later.

- tab_size:

The tab size allows the screen to be divided into vertical segments of a specified size, to which
the cursor will move when a tab character (\t) is printed. This allows text alignment or easier column
division.

- grob:
Since the font is loaded from a ‘.png’ file, it must be buffered in one of the HP Prime’s graphic
objects (graphic variables). By default, this is 9 (G9), which can be specified during initialization using the



grob argument. Like dark_mode, the grob value can only be set during terminal initialization and cannot
be changed later.

Example of initializing a terminal with 53 columns and 20 rows in dark mode, with the status bar set to
'Hello World!' and displaying the text 'This\n\tis\n\t\ta test' using print, which will interpret the
newline and tab characters:

import tml
t = tml.tml(status="Hello World!', font='med6x12', dark_mode=True)
t.print('This\n\tis\n\t\ta test"')

t.print('\n\nPress any key...")
t.read_key()

Obtained effect on the screen:

a test

Press any key. ..

Hella lorld!

Available methods

The tml module provides the following methods:

- print(*args)
Allows for output of text and other values to the terminal. It accepts arguments and works like the
built-in print command in MicroPython on HP Prime, additionally interpreting the tab character (\t).

- clear()
Clears the terminal screen and places the cursor at position (0,0), which is the top left corner of
the screen. It does not take any arguments.

- set_cursor(x, y)
Sets the cursor at position (x, y). The next use of print or input will start from this position.

- input(prompt, length, alpha, shift, new_line)

The input function allows data entry from the user, similar to the built-in input, but with some
extensions that allow for additional actions during data input. When the edit field appears, the user can
move the cursor left and right within the entered text, insert characters, and delete them using the
Backspace or Del key. During data entry, modifier keys Shift and Alpha (and their lock states) can be
used according to the standard behavior in the Home view. When any modifier key is activated, the



keyboard status is displayed in the status bar (if enabled), where 'SL' stands for Shift-Lock, 'AL' or 'al'
indicates Alpha-Lock depending on case, and '*" indicates active Shift (for one-time use).

It is also possible to enter custom characters by holding the Symb key while pressing other keys.
However, this requires defining additional key mappings, as mentioned in the 'Advanced features'
section.

If Esc or Clear (Shift+Esc) is pressed during editing, the edit field will be cleared, and the cursor
will return to the starting position.Pressing Enter ends input and returns the entered data as a string.

Note: Keyboard input may not work correctly on the Virtual Calculator when pressing letter or symbol
keys. If you want to test the input method, use exclusively mapped keys (refer to the Computer keyboard
mapping section in VC help for details) or use a physical HP Prime.

Input takes following arguments:
prompt: Specifies the prompt that will appear on the screen in the data input field.
length: By default, input creates an edit field that spans the entire line (from the cursor’s x
position to the right edge of the terminal). However, a maximum edit field length can be specified,
preventing more characters than indicated by the length argument from being entered.

e alpha: Initially enables Alpha-Lock when the edit field appears, allowing text to be entered
immediately without needing to press the Alpha key.
shift: Initially enables Shift or Shift-Lock (if Alpha-Lock was previously activated).
new_line: This argument specifies whether pressing Enter should result in moving to a new line.
Setting new_line to False is useful when collecting data on the last line of the terminal, and you
don’t want the screen to scroll after pressing either of these keys.

- read_key(code=False)

Pauses the program and waits for any key to be pressed (except Alpha and Shift). By default, it
returns the symbol of the pressed key, taking into account the current Alpha and Shift states. If code is
set to True, it returns the key code of the pressed key (0-51).

- get_keys|()
Returns a list of codes for currently pressed keys (including Alpha and Shift, as well as when
multiple keys are pressed simultaneously). It returns an empty list when no key is pressed.

- set_status(text)
Allows setting the text displayed on the status bar. To clear the status bar, use an empty string:
set_status(''")

- print_xy(x, y, text)

Displays the specified text at position (x, y) of the terminal without moving the cursor. For this
function, tab and newline characters are not interpreted.

Advanced features
This section is intended for advanced users and describes three tml features:
1. Creating custom font files.

Mapping graphic symbols from a font file to individual displayable characters.
3. Mapping keyboard keys for direct input of custom symbols.

A

You will also find information here on how tm/ works at a lower level.



Each tml font file is a ‘.png’ file, but slightly modified, as it must contain additional information
about the font width and configuration number of the specific font. Internally, such a ‘.png’ file containing
the appearance of individual font characters is treated as an array from 0 to 94, where 0 is a space and
94 is a tilde. All characters are arranged side by side in a single row with a fixed pixel width, so when
displaying characters using the print method, each character can be mapped to the appropriate index
and the corresponding section of the font file can be displayed to represent the appearance of the
specific character.

By default, only characters within the basic ASCII table range can be displayed and entered in
tml, i.e., from the space character (code 32) to the tilde (code 126). All characters in this range are
handled by the built-in mapping, so there is no need to define additional mappings for either displaying
these characters or key mappings for entering them. However, it is possible to use font files with a larger
set of characters. This requires using two additional arguments when initializing tml: ext_char_map and
symb_key_map.

Creating custom fonts files

To create custom font, create a bitmap with dimensions of x = 95 * character_width andy =
character_height. The bitmap should include at least ASCII characters from code 32 (space) to 126
(tilde) in a single row. The characters should be black on a white background. Grayscale shades are
allowed, but other colors should be avoided, as they may cause artifacts during text editing on the
screen or when dark mode is enabled.

If you want your font to include more than 95 characters (e.g., if you want to add diacritical marks
or dedicated symbols needed in your program), you can add them in any order after the tilde character,
meaning that the index of the first additional character will be 95 (as a reminder: the tilde is the 95th
character, but since we start counting from zero, the tilde index is 94). Once all the characters are
designed, save the bitmap file in ‘.png’ format (you can set the color depth to 1-bit if only black and white
color were user).

For the file to be correctly recognized and imported by the {m/ module, a configuration byte must
be added at the end of the file. This byte should include the configuration number and the width of a
single character in pixels. The configuration number should be stored in the three least significant bits of
this byte and should currently always be set to 0 (other configuration numbers are reserved for future
use), while the width of a single character should be stored in the five most significant bits as a value
decreased by 4. This allows for font widths ranging from 4 to 35 pixels.

For example, if the font file contains characters with a width of 9 pixels, the configuration byte
should look like this in binary: 00101000, which is 40 in decimal. You can add this byte on a PC or
directly on the HP Prime using the AFilesB command.

Once this byte is added and the file extension is changed to '.font', the font file is ready to be
used in tml.

Mapping graphic symbols from a font file to individual displayable characters

If your font contains more than the standard 95 characters, you need to define a mapping of
Unicode characters to the corresponding indices in your font for tml/ to know which characters to display
for the additional symbols outside the standard ASCII range.

For example, let's assume that the 95th character is the paragraph symbol (§), which is not part
of the standard ASCII character set. If the print method encounters this character in the text to be
printed, it needs to know its position within your font, i.e., it needs to know its index. To map the
character to an index, you need to define a dictionary in the following form: { '§' : 95 } and pass it as
the ext_char_map argument.



For example, let's assume your font includes symbols for card suits:

& (Spade), © (Heart), ¢ (Diamond), # (Club), respectively from index 95 to 98.
In this case, the dictionary defined in ext_char_map should look like this:

{ '4" : 95, 'O"'" : 96, 0" : 97, '#'" : 98}

If you have designed custom symbols that do not have corresponding Unicode characters, you
can use any Unicode character that you do not need in your program and replace it with your symbol.

It is not necessary to define all the designed characters in the dictionary. However, if a character
that has been omitted appears in the text provided to the print method, it simply will not be displayed on
the screen.

Mapping keyboard keys for direct input of custom symbols

When a mapping for non-standard characters has been defined and they can be displayed on the
terminal using print, there may sometimes be a need to enter them from the keyboard. In the Home view,
to enter a language-specific character such as 'a’, you can open the 'Chars' tool, locate the symbol, and
insert it into the edit field. However, this tool is not accessible when running a program that utilizes the
tml module. In such cases, the input method provides a way to enter certain characters defined in your
font through key combinations: [Symb]+[any_key]. Similar to font-to-character mapping, it is necessary
to define the key mappings and pass them as the symb_key map argument.

This method also allows you to define multiple symbols under one key, which can be useful when
dealing with a group of similar symbols, preventing the need to assign different keys for each. For
example, in French, the letter 'e' has four diacritical variants: é, é, &, €. In such a case, it is best to place
all four under the [Symb]+[e] combination, which will be intuitive and convenient when entering text
containing any of these characters.

To input any of these characters into the edit field, press and hold the [Symb] key, then
additionally press the [e] key. The first symbol will appear at the cursor position, but the cursor will not
move to the next position until you release the [Symb] key. At this point, pressing the [e] key repeatedly
will cycle through the characters defined under this key, and releasing the [Symb] key will confirm the
currently displayed character.

Mapping keys to symbols involves using the key number (ranging from 0 to 51) as a key in the
dictionary. The corresponding value should be a list of four elements, where each element is either a list
of symbols or None. Each of these four elements represents a different keyboard state, as the displayed
symbols may vary depending on the activation of the Shift, Alpha key, or a combination of both. Thus,
the value for each key in the dictionary must be a list of four cases in the following order:

1. when no modifier is active,
2. when only Alpha is active,
3. when only Shift is active,
4. when both are active.

For example, for the key with the letter 'e' and the French diacritical characters, you could create
the following dictionary:
{ 18: [None, ['e','é','é&','&'], None, ['E','E',"E','E']] }

This should be understood as follows: when neither Alpha nor Shift is active, pressing
[Symb]+[e] will not display any symbol (since Alpha is not active, there is no reason for any letters to
appear). However, if the Alpha modifier is enabled, pressing [Symb]+[e] will display the character ‘é’
(lowercase), and each subsequent press of [e] will cycle through the symbols in the list until the [Symb]
key is released. The third value is also None, as we do not want to show letter symbols when only Shift is
active (this might be a good place to display some unique non-alphanumeric symbols instead). The



fourth value indicates what should appear when both Alpha and Shift are active, so in this case, the
symbols E, E, E, E (uppercase) will be displayed.

Known issues and limitations

e At this moment, it is not possible to restore the content of the terminal screen after it has been
overwritten by external code. This also means that if two parallel instances of tm/ are created, it is
not possible to switch between them.

e There is no support for displaying text and background colors in different colors (this is due to the
limitations of the hpprime library).

e |tis also not possible to read the character code from the tm/ screen at specific coordinates.

If you find any bugs, have an interesting suggestion, or simply want to contact me, send a private
message to the user komame on www.hpmuseum.org/forum/.



https://www.hpmuseum.org/forum/

